Cargando…

Effect of autophagy on allodynia, hyperalgesia and astrocyte activation in a rat model of neuropathic pain

Primary damage or dysfunction of the nervous system may cause or initiate neuropathic pain. However, it has been difficult to establish an effective treatment for neuropathic pain, as the mechanisms responsible for its pathology remain largely unknown. Autophagy is closely associated with the pathol...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hongguang, Hu, Yajiao, Xie, Keliang, Chen, Yajun, Wang, Huixing, Bian, Yingxue, Wang, Yanyan, Dong, Aili, Yu, Yonghao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108883/
https://www.ncbi.nlm.nih.gov/pubmed/30015858
http://dx.doi.org/10.3892/ijmm.2018.3763
Descripción
Sumario:Primary damage or dysfunction of the nervous system may cause or initiate neuropathic pain. However, it has been difficult to establish an effective treatment for neuropathic pain, as the mechanisms responsible for its pathology remain largely unknown. Autophagy is closely associated with the pathological process of neurodegenerative diseases, neuropathic injury and cancer, among others. The aim of the present study was to examine the changes in the autophagy-lysosomal pathway and discuss the effects of autophagy on allodynia, hyperalgesia and astrocyte activation in neuropathic pain. A neuropathic pain model was induced by chronic constriction injury (CCI) in rats. Inducers and inhibitors of autophagy and lysosomes were used to assess autophagy, allodynia, hyperalgesia and astrocyte activity. Neuropathic pain was found to induce an increase in the levels of the autophagy-related proteins, LC3II and Beclin 1 and, and in those of the lysosomal proteins, lysosomal-associated membrane protein type 2 (LAMP2) and Ras-related protein Rab-7a (RAB7), whereas p62 levels were found to decrease from day 1 to 14 following CCI. The autophagy inducer, rapamycin, further increased the LC3II, Beclin 1, lysosomal-associated membrane protein 2 (LAMP2) and Ras-related protein Rab-7a (RAB7) expression levels, and decreased the p62 expression levels, which were accompanied by alleviation of allodynia, hyperalgesia and astrocyte activation in the rats subjected to CCI; the autophagy inhibitor, 3-methyladenine, reversed these effects. The use of the lysosomal inhibitors, bafilomycin and chloroquine, resulted in the accumulation of LC3II and Beclin 1, a decrease in the levels of LAMP2 and RAB7, and the exacerbation of allodynia, hyperalgesia and astrocyte activation in rats with neuropathic pain. On the whole, the findings of this study indicate that neuropathic pain activates autophagy, which alleviates mechanical and thermal hyperalgesia and suppresses astrocyte activity. Therefore, neuropathic pain induced by CCI in rats appears to be mediated via the autophagy-lysosomal pathway.