Cargando…
A comprehensive analysis of prognosis prediction models based on pathway-level, gene-level and clinical information for glioblastoma
The present study aimed to develop a pathway-based prognosis prediction model for glioblastoma (GBM). Univariate and multivariate Cox regression analysis were used to identify prognosis-related genes and clinical factors using mRNA-seq data of GBM samples from The Cancer Genome Atlas (TCGA) database...
Autores principales: | Liang, Ruqing, Wang, Meng, Zheng, Guizhi, Zhu, Hua, Zhi, Yaqin, Sun, Zongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108889/ https://www.ncbi.nlm.nih.gov/pubmed/30015853 http://dx.doi.org/10.3892/ijmm.2018.3765 |
Ejemplares similares
-
Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization
por: Liang, Ruqing, et al.
Publicado: (2018) -
Comparison of pathway and gene-level models for cancer prognosis prediction
por: Zheng, Xingyu, et al.
Publicado: (2020) -
Plasma IGFBP-2 Levels after Postoperative Combined Radiotherapy and Chemotherapy Predict Prognosis in Elderly Glioblastoma Patients
por: Han, Sheng, et al.
Publicado: (2014) -
Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma
por: Han, Jinkun, et al.
Publicado: (2021) -
ExoHCR: a sensitive assay to profile PD-L1 level on tumor exosomes for immunotherapeutic prognosis
por: Hu, Lujun, et al.
Publicado: (2020)