Cargando…
Impact of pore anisotropy on the thermal conductivity of porous Si nanowires
Porous materials display enhanced scattering mechanisms that greatly influence their transport properties. Metal-assisted chemical etching (MACE) enables fabrication of porous silicon nanowires starting from a doped Si wafer by using a metal template that catalyzes the etching process. Here, we repo...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109058/ https://www.ncbi.nlm.nih.gov/pubmed/30143650 http://dx.doi.org/10.1038/s41598-018-30223-0 |
_version_ | 1783350248487256064 |
---|---|
author | Ferrando-Villalba, P. D’Ortenzi, L. Dalkiranis, G. G. Cara, E. Lopeandia, A. F. Abad, Ll. Rurali, R. Cartoixà, X. De Leo, N. Saghi, Z. Jacob, M. Gambacorti, N. Boarino, L. Rodríguez-Viejo, J. |
author_facet | Ferrando-Villalba, P. D’Ortenzi, L. Dalkiranis, G. G. Cara, E. Lopeandia, A. F. Abad, Ll. Rurali, R. Cartoixà, X. De Leo, N. Saghi, Z. Jacob, M. Gambacorti, N. Boarino, L. Rodríguez-Viejo, J. |
author_sort | Ferrando-Villalba, P. |
collection | PubMed |
description | Porous materials display enhanced scattering mechanisms that greatly influence their transport properties. Metal-assisted chemical etching (MACE) enables fabrication of porous silicon nanowires starting from a doped Si wafer by using a metal template that catalyzes the etching process. Here, we report on the low thermal conductivity (κ) of individual porous Si nanowires (NWs) prepared from MACE, with values as low as 0.87 W·m(−1)·K(−1) for 90 nm diameter wires with 35–40% porosity. Despite the strong suppression of long mean free path phonons in porous materials, we find a linear correlation of κ with the NW diameter. We ascribe this dependence to the anisotropic porous structure that arises during chemical etching and modifies the phonon percolation pathway in the center and outer regions of the nanowire. The inner microstructure of the NWs is visualized by means of electron tomography. In addition, we have used molecular dynamics simulations to provide guidance for how a porosity gradient influences phonon transport along the axis of the NW. Our findings are important towards the rational design of porous materials with tailored thermal and electronic properties for improved thermoelectric devices. |
format | Online Article Text |
id | pubmed-6109058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61090582018-08-31 Impact of pore anisotropy on the thermal conductivity of porous Si nanowires Ferrando-Villalba, P. D’Ortenzi, L. Dalkiranis, G. G. Cara, E. Lopeandia, A. F. Abad, Ll. Rurali, R. Cartoixà, X. De Leo, N. Saghi, Z. Jacob, M. Gambacorti, N. Boarino, L. Rodríguez-Viejo, J. Sci Rep Article Porous materials display enhanced scattering mechanisms that greatly influence their transport properties. Metal-assisted chemical etching (MACE) enables fabrication of porous silicon nanowires starting from a doped Si wafer by using a metal template that catalyzes the etching process. Here, we report on the low thermal conductivity (κ) of individual porous Si nanowires (NWs) prepared from MACE, with values as low as 0.87 W·m(−1)·K(−1) for 90 nm diameter wires with 35–40% porosity. Despite the strong suppression of long mean free path phonons in porous materials, we find a linear correlation of κ with the NW diameter. We ascribe this dependence to the anisotropic porous structure that arises during chemical etching and modifies the phonon percolation pathway in the center and outer regions of the nanowire. The inner microstructure of the NWs is visualized by means of electron tomography. In addition, we have used molecular dynamics simulations to provide guidance for how a porosity gradient influences phonon transport along the axis of the NW. Our findings are important towards the rational design of porous materials with tailored thermal and electronic properties for improved thermoelectric devices. Nature Publishing Group UK 2018-08-24 /pmc/articles/PMC6109058/ /pubmed/30143650 http://dx.doi.org/10.1038/s41598-018-30223-0 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ferrando-Villalba, P. D’Ortenzi, L. Dalkiranis, G. G. Cara, E. Lopeandia, A. F. Abad, Ll. Rurali, R. Cartoixà, X. De Leo, N. Saghi, Z. Jacob, M. Gambacorti, N. Boarino, L. Rodríguez-Viejo, J. Impact of pore anisotropy on the thermal conductivity of porous Si nanowires |
title | Impact of pore anisotropy on the thermal conductivity of porous Si nanowires |
title_full | Impact of pore anisotropy on the thermal conductivity of porous Si nanowires |
title_fullStr | Impact of pore anisotropy on the thermal conductivity of porous Si nanowires |
title_full_unstemmed | Impact of pore anisotropy on the thermal conductivity of porous Si nanowires |
title_short | Impact of pore anisotropy on the thermal conductivity of porous Si nanowires |
title_sort | impact of pore anisotropy on the thermal conductivity of porous si nanowires |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109058/ https://www.ncbi.nlm.nih.gov/pubmed/30143650 http://dx.doi.org/10.1038/s41598-018-30223-0 |
work_keys_str_mv | AT ferrandovillalbap impactofporeanisotropyonthethermalconductivityofporoussinanowires AT dortenzil impactofporeanisotropyonthethermalconductivityofporoussinanowires AT dalkiranisgg impactofporeanisotropyonthethermalconductivityofporoussinanowires AT carae impactofporeanisotropyonthethermalconductivityofporoussinanowires AT lopeandiaaf impactofporeanisotropyonthethermalconductivityofporoussinanowires AT abadll impactofporeanisotropyonthethermalconductivityofporoussinanowires AT ruralir impactofporeanisotropyonthethermalconductivityofporoussinanowires AT cartoixax impactofporeanisotropyonthethermalconductivityofporoussinanowires AT deleon impactofporeanisotropyonthethermalconductivityofporoussinanowires AT saghiz impactofporeanisotropyonthethermalconductivityofporoussinanowires AT jacobm impactofporeanisotropyonthethermalconductivityofporoussinanowires AT gambacortin impactofporeanisotropyonthethermalconductivityofporoussinanowires AT boarinol impactofporeanisotropyonthethermalconductivityofporoussinanowires AT rodriguezviejoj impactofporeanisotropyonthethermalconductivityofporoussinanowires |