Cargando…

Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit

Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into...

Descripción completa

Detalles Bibliográficos
Autores principales: Dell’Anno, Maria Teresa, Wang, Xingxing, Onorati, Marco, Li, Mingfeng, Talpo, Francesca, Sekine, Yuichi, Ma, Shaojie, Liu, Fuchen, Cafferty, William B. J., Sestan, Nenad, Strittmatter, Stephen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109094/
https://www.ncbi.nlm.nih.gov/pubmed/30143638
http://dx.doi.org/10.1038/s41467-018-05844-8
_version_ 1783350256862232576
author Dell’Anno, Maria Teresa
Wang, Xingxing
Onorati, Marco
Li, Mingfeng
Talpo, Francesca
Sekine, Yuichi
Ma, Shaojie
Liu, Fuchen
Cafferty, William B. J.
Sestan, Nenad
Strittmatter, Stephen M.
author_facet Dell’Anno, Maria Teresa
Wang, Xingxing
Onorati, Marco
Li, Mingfeng
Talpo, Francesca
Sekine, Yuichi
Ma, Shaojie
Liu, Fuchen
Cafferty, William B. J.
Sestan, Nenad
Strittmatter, Stephen M.
author_sort Dell’Anno, Maria Teresa
collection PubMed
description Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.
format Online
Article
Text
id pubmed-6109094
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61090942018-08-27 Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit Dell’Anno, Maria Teresa Wang, Xingxing Onorati, Marco Li, Mingfeng Talpo, Francesca Sekine, Yuichi Ma, Shaojie Liu, Fuchen Cafferty, William B. J. Sestan, Nenad Strittmatter, Stephen M. Nat Commun Article Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery. Nature Publishing Group UK 2018-08-24 /pmc/articles/PMC6109094/ /pubmed/30143638 http://dx.doi.org/10.1038/s41467-018-05844-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Dell’Anno, Maria Teresa
Wang, Xingxing
Onorati, Marco
Li, Mingfeng
Talpo, Francesca
Sekine, Yuichi
Ma, Shaojie
Liu, Fuchen
Cafferty, William B. J.
Sestan, Nenad
Strittmatter, Stephen M.
Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
title Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
title_full Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
title_fullStr Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
title_full_unstemmed Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
title_short Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
title_sort human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109094/
https://www.ncbi.nlm.nih.gov/pubmed/30143638
http://dx.doi.org/10.1038/s41467-018-05844-8
work_keys_str_mv AT dellannomariateresa humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT wangxingxing humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT onoratimarco humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT limingfeng humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT talpofrancesca humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT sekineyuichi humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT mashaojie humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT liufuchen humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT caffertywilliambj humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT sestannenad humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit
AT strittmatterstephenm humanneuroepithelialstemcellregionalspecificityenablesspinalcordrepairthrougharelaycircuit