Cargando…
Polyphenols (S3) Isolated from Cone Scales of Pinus koraiensis Alleviate Decreased Bone Formation in Rat under Simulated Microgravity
In order to screen out an effective bone loss protectant from natural plant polyphenol and to elucidate the mechanism of the plant polyphenols that alleviate bone loss under simulated microgravity, the proliferation activities of 9 total polyphenol extracts from natural product (TPENP) on osteoblast...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109125/ https://www.ncbi.nlm.nih.gov/pubmed/30143710 http://dx.doi.org/10.1038/s41598-018-30992-8 |
Sumario: | In order to screen out an effective bone loss protectant from natural plant polyphenol and to elucidate the mechanism of the plant polyphenols that alleviate bone loss under simulated microgravity, the proliferation activities of 9 total polyphenol extracts from natural product (TPENP) on osteoblasts were measured. Polyphenols (S3) was isolated from total polyphenols of cone scales from pinus koraiensis (Korean pine). ALP activity in osteoblasts and MDA level in femur were measured. Mechanical properties and microstructure of the distal cancellous region of the femur in rat were tested. Various bone metabolism markers, enzymes activity and genes expression were also analyzed. The results showed that S3 has the highest activity of osteoblast proliferation. S3 promoted ALP activity in osteoblasts, enhanced mechanical properties and microstructure of the distal cancellous region of femur in rat, decreased MDA level, elevated the serum concentration of BALP, PINP and activities of SOD, CAT, GSH-Px in femur under simulated microgravity. In addition, S3 enhanced the expression of NRF-2, β-catenin, p-GSK3-β, OSX, RUNX2, Osteonectin, Osteocalcin, ALP and collagen I. These results indicated that S3 can alleviated bone loss induced by simulated microgravity through abate the inhibition of the oxidative stress on Wnt/β-catenin signaling pathway. |
---|