Cargando…
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
Rapidly discovering functional materials remains an open challenge because the traditional trial-and-error methods are usually inefficient especially when thousands of candidates are treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs)...
Autores principales: | Lu, Shuaihua, Zhou, Qionghua, Ouyang, Yixin, Guo, Yilv, Li, Qiang, Wang, Jinlan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109147/ https://www.ncbi.nlm.nih.gov/pubmed/30143621 http://dx.doi.org/10.1038/s41467-018-05761-w |
Ejemplares similares
-
Inverse design with deep generative models: next step in materials discovery
por: Lu, Shuaihua, et al.
Publicado: (2022) -
Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation
por: Chen, Min, et al.
Publicado: (2019) -
Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites
por: Zhou, Jiachen, et al.
Publicado: (2017) -
Stable carbamate pathway towards organic–inorganic hybrid perovskites and aromatic imines
por: Lee, Kyu Hyung, et al.
Publicado: (2020) -
Lead-free hybrid perovskites for photovoltaics
por: Stroyuk, Oleksandr
Publicado: (2018)