Cargando…
The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F(1)F(o)-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109181/ https://www.ncbi.nlm.nih.gov/pubmed/30143614 http://dx.doi.org/10.1038/s41467-018-05655-x |
_version_ | 1783350277451022336 |
---|---|
author | Quintana-Cabrera, Rubén Quirin, Charlotte Glytsou, Christina Corrado, Mauro Urbani, Andrea Pellattiero, Anna Calvo, Enrique Vázquez, Jesús Enríquez, José Antonio Gerle, Christoph Soriano, María Eugenia Bernardi, Paolo Scorrano, Luca |
author_facet | Quintana-Cabrera, Rubén Quirin, Charlotte Glytsou, Christina Corrado, Mauro Urbani, Andrea Pellattiero, Anna Calvo, Enrique Vázquez, Jesús Enríquez, José Antonio Gerle, Christoph Soriano, María Eugenia Bernardi, Paolo Scorrano, Luca |
author_sort | Quintana-Cabrera, Rubén |
collection | PubMed |
description | It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F(1)F(o)-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization. |
format | Online Article Text |
id | pubmed-6109181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61091812018-08-27 The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function Quintana-Cabrera, Rubén Quirin, Charlotte Glytsou, Christina Corrado, Mauro Urbani, Andrea Pellattiero, Anna Calvo, Enrique Vázquez, Jesús Enríquez, José Antonio Gerle, Christoph Soriano, María Eugenia Bernardi, Paolo Scorrano, Luca Nat Commun Article It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F(1)F(o)-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization. Nature Publishing Group UK 2018-08-24 /pmc/articles/PMC6109181/ /pubmed/30143614 http://dx.doi.org/10.1038/s41467-018-05655-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Quintana-Cabrera, Rubén Quirin, Charlotte Glytsou, Christina Corrado, Mauro Urbani, Andrea Pellattiero, Anna Calvo, Enrique Vázquez, Jesús Enríquez, José Antonio Gerle, Christoph Soriano, María Eugenia Bernardi, Paolo Scorrano, Luca The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function |
title | The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function |
title_full | The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function |
title_fullStr | The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function |
title_full_unstemmed | The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function |
title_short | The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function |
title_sort | cristae modulator optic atrophy 1 requires mitochondrial atp synthase oligomers to safeguard mitochondrial function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109181/ https://www.ncbi.nlm.nih.gov/pubmed/30143614 http://dx.doi.org/10.1038/s41467-018-05655-x |
work_keys_str_mv | AT quintanacabreraruben thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT quirincharlotte thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT glytsouchristina thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT corradomauro thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT urbaniandrea thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT pellattieroanna thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT calvoenrique thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT vazquezjesus thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT enriquezjoseantonio thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT gerlechristoph thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT sorianomariaeugenia thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT bernardipaolo thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT scorranoluca thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT quintanacabreraruben cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT quirincharlotte cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT glytsouchristina cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT corradomauro cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT urbaniandrea cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT pellattieroanna cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT calvoenrique cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT vazquezjesus cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT enriquezjoseantonio cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT gerlechristoph cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT sorianomariaeugenia cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT bernardipaolo cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction AT scorranoluca cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction |