Cargando…

The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function

It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F(1)F(o)-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss...

Descripción completa

Detalles Bibliográficos
Autores principales: Quintana-Cabrera, Rubén, Quirin, Charlotte, Glytsou, Christina, Corrado, Mauro, Urbani, Andrea, Pellattiero, Anna, Calvo, Enrique, Vázquez, Jesús, Enríquez, José Antonio, Gerle, Christoph, Soriano, María Eugenia, Bernardi, Paolo, Scorrano, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109181/
https://www.ncbi.nlm.nih.gov/pubmed/30143614
http://dx.doi.org/10.1038/s41467-018-05655-x
_version_ 1783350277451022336
author Quintana-Cabrera, Rubén
Quirin, Charlotte
Glytsou, Christina
Corrado, Mauro
Urbani, Andrea
Pellattiero, Anna
Calvo, Enrique
Vázquez, Jesús
Enríquez, José Antonio
Gerle, Christoph
Soriano, María Eugenia
Bernardi, Paolo
Scorrano, Luca
author_facet Quintana-Cabrera, Rubén
Quirin, Charlotte
Glytsou, Christina
Corrado, Mauro
Urbani, Andrea
Pellattiero, Anna
Calvo, Enrique
Vázquez, Jesús
Enríquez, José Antonio
Gerle, Christoph
Soriano, María Eugenia
Bernardi, Paolo
Scorrano, Luca
author_sort Quintana-Cabrera, Rubén
collection PubMed
description It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F(1)F(o)-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization.
format Online
Article
Text
id pubmed-6109181
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61091812018-08-27 The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function Quintana-Cabrera, Rubén Quirin, Charlotte Glytsou, Christina Corrado, Mauro Urbani, Andrea Pellattiero, Anna Calvo, Enrique Vázquez, Jesús Enríquez, José Antonio Gerle, Christoph Soriano, María Eugenia Bernardi, Paolo Scorrano, Luca Nat Commun Article It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F(1)F(o)-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization. Nature Publishing Group UK 2018-08-24 /pmc/articles/PMC6109181/ /pubmed/30143614 http://dx.doi.org/10.1038/s41467-018-05655-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Quintana-Cabrera, Rubén
Quirin, Charlotte
Glytsou, Christina
Corrado, Mauro
Urbani, Andrea
Pellattiero, Anna
Calvo, Enrique
Vázquez, Jesús
Enríquez, José Antonio
Gerle, Christoph
Soriano, María Eugenia
Bernardi, Paolo
Scorrano, Luca
The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
title The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
title_full The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
title_fullStr The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
title_full_unstemmed The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
title_short The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
title_sort cristae modulator optic atrophy 1 requires mitochondrial atp synthase oligomers to safeguard mitochondrial function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109181/
https://www.ncbi.nlm.nih.gov/pubmed/30143614
http://dx.doi.org/10.1038/s41467-018-05655-x
work_keys_str_mv AT quintanacabreraruben thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT quirincharlotte thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT glytsouchristina thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT corradomauro thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT urbaniandrea thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT pellattieroanna thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT calvoenrique thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT vazquezjesus thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT enriquezjoseantonio thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT gerlechristoph thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT sorianomariaeugenia thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT bernardipaolo thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT scorranoluca thecristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT quintanacabreraruben cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT quirincharlotte cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT glytsouchristina cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT corradomauro cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT urbaniandrea cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT pellattieroanna cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT calvoenrique cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT vazquezjesus cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT enriquezjoseantonio cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT gerlechristoph cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT sorianomariaeugenia cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT bernardipaolo cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction
AT scorranoluca cristaemodulatoropticatrophy1requiresmitochondrialatpsynthaseoligomerstosafeguardmitochondrialfunction