Cargando…

Interaction between the microbiome and TP53 in human lung cancer

BACKGROUND: Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutat...

Descripción completa

Detalles Bibliográficos
Autores principales: Greathouse, K. Leigh, White, James R., Vargas, Ashely J., Bliskovsky, Valery V., Beck, Jessica A., von Muhlinen, Natalia, Polley, Eric C., Bowman, Elise D., Khan, Mohammed A., Robles, Ana I., Cooks, Tomer, Ryan, Bríd M., Padgett, Noah, Dzutsev, Amiran H., Trinchieri, Giorgio, Pineda, Marbin A., Bilke, Sven, Meltzer, Paul S., Hokenstad, Alexis N., Stickrod, Tricia M., Walther-Antonio, Marina R., Earl, Joshua P., Mell, Joshua C., Krol, Jaroslaw E., Balashov, Sergey V., Bhat, Archana S., Ehrlich, Garth D., Valm, Alex, Deming, Clayton, Conlan, Sean, Oh, Julia, Segre, Julie A., Harris, Curtis C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109311/
https://www.ncbi.nlm.nih.gov/pubmed/30143034
http://dx.doi.org/10.1186/s13059-018-1501-6
_version_ 1783350304441368576
author Greathouse, K. Leigh
White, James R.
Vargas, Ashely J.
Bliskovsky, Valery V.
Beck, Jessica A.
von Muhlinen, Natalia
Polley, Eric C.
Bowman, Elise D.
Khan, Mohammed A.
Robles, Ana I.
Cooks, Tomer
Ryan, Bríd M.
Padgett, Noah
Dzutsev, Amiran H.
Trinchieri, Giorgio
Pineda, Marbin A.
Bilke, Sven
Meltzer, Paul S.
Hokenstad, Alexis N.
Stickrod, Tricia M.
Walther-Antonio, Marina R.
Earl, Joshua P.
Mell, Joshua C.
Krol, Jaroslaw E.
Balashov, Sergey V.
Bhat, Archana S.
Ehrlich, Garth D.
Valm, Alex
Deming, Clayton
Conlan, Sean
Oh, Julia
Segre, Julie A.
Harris, Curtis C.
author_facet Greathouse, K. Leigh
White, James R.
Vargas, Ashely J.
Bliskovsky, Valery V.
Beck, Jessica A.
von Muhlinen, Natalia
Polley, Eric C.
Bowman, Elise D.
Khan, Mohammed A.
Robles, Ana I.
Cooks, Tomer
Ryan, Bríd M.
Padgett, Noah
Dzutsev, Amiran H.
Trinchieri, Giorgio
Pineda, Marbin A.
Bilke, Sven
Meltzer, Paul S.
Hokenstad, Alexis N.
Stickrod, Tricia M.
Walther-Antonio, Marina R.
Earl, Joshua P.
Mell, Joshua C.
Krol, Jaroslaw E.
Balashov, Sergey V.
Bhat, Archana S.
Ehrlich, Garth D.
Valm, Alex
Deming, Clayton
Conlan, Sean
Oh, Julia
Segre, Julie A.
Harris, Curtis C.
author_sort Greathouse, K. Leigh
collection PubMed
description BACKGROUND: Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort. RESULTS: Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas. CONCLUSIONS: The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-018-1501-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6109311
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-61093112018-08-29 Interaction between the microbiome and TP53 in human lung cancer Greathouse, K. Leigh White, James R. Vargas, Ashely J. Bliskovsky, Valery V. Beck, Jessica A. von Muhlinen, Natalia Polley, Eric C. Bowman, Elise D. Khan, Mohammed A. Robles, Ana I. Cooks, Tomer Ryan, Bríd M. Padgett, Noah Dzutsev, Amiran H. Trinchieri, Giorgio Pineda, Marbin A. Bilke, Sven Meltzer, Paul S. Hokenstad, Alexis N. Stickrod, Tricia M. Walther-Antonio, Marina R. Earl, Joshua P. Mell, Joshua C. Krol, Jaroslaw E. Balashov, Sergey V. Bhat, Archana S. Ehrlich, Garth D. Valm, Alex Deming, Clayton Conlan, Sean Oh, Julia Segre, Julie A. Harris, Curtis C. Genome Biol Research BACKGROUND: Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort. RESULTS: Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas. CONCLUSIONS: The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-018-1501-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-24 /pmc/articles/PMC6109311/ /pubmed/30143034 http://dx.doi.org/10.1186/s13059-018-1501-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Greathouse, K. Leigh
White, James R.
Vargas, Ashely J.
Bliskovsky, Valery V.
Beck, Jessica A.
von Muhlinen, Natalia
Polley, Eric C.
Bowman, Elise D.
Khan, Mohammed A.
Robles, Ana I.
Cooks, Tomer
Ryan, Bríd M.
Padgett, Noah
Dzutsev, Amiran H.
Trinchieri, Giorgio
Pineda, Marbin A.
Bilke, Sven
Meltzer, Paul S.
Hokenstad, Alexis N.
Stickrod, Tricia M.
Walther-Antonio, Marina R.
Earl, Joshua P.
Mell, Joshua C.
Krol, Jaroslaw E.
Balashov, Sergey V.
Bhat, Archana S.
Ehrlich, Garth D.
Valm, Alex
Deming, Clayton
Conlan, Sean
Oh, Julia
Segre, Julie A.
Harris, Curtis C.
Interaction between the microbiome and TP53 in human lung cancer
title Interaction between the microbiome and TP53 in human lung cancer
title_full Interaction between the microbiome and TP53 in human lung cancer
title_fullStr Interaction between the microbiome and TP53 in human lung cancer
title_full_unstemmed Interaction between the microbiome and TP53 in human lung cancer
title_short Interaction between the microbiome and TP53 in human lung cancer
title_sort interaction between the microbiome and tp53 in human lung cancer
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109311/
https://www.ncbi.nlm.nih.gov/pubmed/30143034
http://dx.doi.org/10.1186/s13059-018-1501-6
work_keys_str_mv AT greathousekleigh interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT whitejamesr interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT vargasashelyj interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT bliskovskyvaleryv interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT beckjessicaa interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT vonmuhlinennatalia interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT polleyericc interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT bowmanelised interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT khanmohammeda interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT roblesanai interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT cookstomer interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT ryanbridm interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT padgettnoah interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT dzutsevamiranh interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT trinchierigiorgio interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT pinedamarbina interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT bilkesven interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT meltzerpauls interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT hokenstadalexisn interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT stickrodtriciam interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT waltherantoniomarinar interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT earljoshuap interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT melljoshuac interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT kroljaroslawe interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT balashovsergeyv interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT bhatarchanas interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT ehrlichgarthd interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT valmalex interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT demingclayton interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT conlansean interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT ohjulia interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT segrejuliea interactionbetweenthemicrobiomeandtp53inhumanlungcancer
AT harriscurtisc interactionbetweenthemicrobiomeandtp53inhumanlungcancer