Cargando…
Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method
A mole is a born digger spending its entire existence digging tunnels. The five claws of a mole's hand are combinative to cut soil powerfully and efficiently. However, little was known in detail about the interaction between the soil and the five-claw combination. In this study, we simulated th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109513/ https://www.ncbi.nlm.nih.gov/pubmed/30159028 http://dx.doi.org/10.1155/2018/7854052 |
_version_ | 1783350337483046912 |
---|---|
author | Yang, Yuwan Li, Mo Tong, Jin Ma, Yunhai |
author_facet | Yang, Yuwan Li, Mo Tong, Jin Ma, Yunhai |
author_sort | Yang, Yuwan |
collection | PubMed |
description | A mole is a born digger spending its entire existence digging tunnels. The five claws of a mole's hand are combinative to cut soil powerfully and efficiently. However, little was known in detail about the interaction between the soil and the five-claw combination. In this study, we simulated the soil cutting process of the five-claw combination using the discrete element method (DEM) as an attempt for the potential design of soil-engaging tools to reduce soil resistance. The five-claw combination moved horizontally in the soil bin. Soil forces (draught and vertical forces) and soil failure (soil rupture distance ratio) were measured at different rake angles and speeds. Results showed that the draught and vertical forces varied nonlinearly as the rake angle increased from 10 to 90°, and both changed linearly with the speed increasing from 1 to 5 m/s. The curve of the soil rupture distance ratio with rake angles could be better described using a quadric function, but the speed had little effect on the soil rupture distance ratio. Notably, the soil rupture distance ratio of the five-claw combination in simulation was on average 19.6% lower than the predicted ratio of simple blades at different rake angles indicating that the five-claw combination could make less soil failure and thereby produce lower soil resistance. Given the draught and vertical forces, the performance of the five-claw combination was optimized at the rake angle of 30°. |
format | Online Article Text |
id | pubmed-6109513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-61095132018-08-29 Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method Yang, Yuwan Li, Mo Tong, Jin Ma, Yunhai Appl Bionics Biomech Research Article A mole is a born digger spending its entire existence digging tunnels. The five claws of a mole's hand are combinative to cut soil powerfully and efficiently. However, little was known in detail about the interaction between the soil and the five-claw combination. In this study, we simulated the soil cutting process of the five-claw combination using the discrete element method (DEM) as an attempt for the potential design of soil-engaging tools to reduce soil resistance. The five-claw combination moved horizontally in the soil bin. Soil forces (draught and vertical forces) and soil failure (soil rupture distance ratio) were measured at different rake angles and speeds. Results showed that the draught and vertical forces varied nonlinearly as the rake angle increased from 10 to 90°, and both changed linearly with the speed increasing from 1 to 5 m/s. The curve of the soil rupture distance ratio with rake angles could be better described using a quadric function, but the speed had little effect on the soil rupture distance ratio. Notably, the soil rupture distance ratio of the five-claw combination in simulation was on average 19.6% lower than the predicted ratio of simple blades at different rake angles indicating that the five-claw combination could make less soil failure and thereby produce lower soil resistance. Given the draught and vertical forces, the performance of the five-claw combination was optimized at the rake angle of 30°. Hindawi 2018-08-06 /pmc/articles/PMC6109513/ /pubmed/30159028 http://dx.doi.org/10.1155/2018/7854052 Text en Copyright © 2018 Yuwan Yang et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Yuwan Li, Mo Tong, Jin Ma, Yunhai Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method |
title | Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method |
title_full | Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method |
title_fullStr | Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method |
title_full_unstemmed | Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method |
title_short | Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method |
title_sort | study on the interaction between soil and the five-claw combination of a mole using the discrete element method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109513/ https://www.ncbi.nlm.nih.gov/pubmed/30159028 http://dx.doi.org/10.1155/2018/7854052 |
work_keys_str_mv | AT yangyuwan studyontheinteractionbetweensoilandthefiveclawcombinationofamoleusingthediscreteelementmethod AT limo studyontheinteractionbetweensoilandthefiveclawcombinationofamoleusingthediscreteelementmethod AT tongjin studyontheinteractionbetweensoilandthefiveclawcombinationofamoleusingthediscreteelementmethod AT mayunhai studyontheinteractionbetweensoilandthefiveclawcombinationofamoleusingthediscreteelementmethod |