Cargando…
An Approximation Framework for Solvers and Decision Procedures
We consider the problem of automatically and efficiently computing models of constraints, in the presence of complex background theories such as floating-point arithmetic. Constructing models, or proving that a constraint is unsatisfiable, has various applications, for instance for automatic generat...
Autores principales: | Zeljić, Aleksandar, Wintersteiger, Christoph M., Rümmer, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109943/ https://www.ncbi.nlm.nih.gov/pubmed/30174362 http://dx.doi.org/10.1007/s10817-016-9393-1 |
Ejemplares similares
-
Error metrics determination in functionally approximated circuits using SAT solvers
por: Abed, Sa’ed, et al.
Publicado: (2020) -
A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality
por: Blanchette, Jasmin Christian, et al.
Publicado: (2018) -
A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters
por: Li, Xinya, et al.
Publicado: (2014) -
PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles
por: Liu, Zhiwei, et al.
Publicado: (2022) -
HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs
por: Russ, Daniel E, et al.
Publicado: (2015)