Cargando…

Establishing a protocol for thromboelastography in sea turtles

Thromboelastography (TEG) provides a global evaluation of haemostasis. This diagnostic test is widely used in mammals but has not previously been performed in reptiles, mainly due to the limited availability of taxon-specific reagents. The objective of this pilot study was to establish a protocol to...

Descripción completa

Detalles Bibliográficos
Autores principales: Barratclough, Ashley, Hanel, Rita, Stacy, Nicole I, Ruterbories, Laura K, Christiansen, Emily, Harms, Craig A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109949/
https://www.ncbi.nlm.nih.gov/pubmed/30167312
http://dx.doi.org/10.1136/vetreco-2017-000240
Descripción
Sumario:Thromboelastography (TEG) provides a global evaluation of haemostasis. This diagnostic test is widely used in mammals but has not previously been performed in reptiles, mainly due to the limited availability of taxon-specific reagents. The objective of this pilot study was to establish a protocol to perform TEG in sea turtles. Pooled citrated plasma, stored at −80°C, from four green turtles (Chelonia mydas) was assayed on a TEG 5000. Several initiators were evaluated: kaolin (n=2), RapidTEG (n=2), fresh (n=2) and frozen (n=6) thromboplastin extracted from pooled brain tissue from several chelonian species, human recombinant tissue factor at 1:100 (n=1), Reptilase (n=2), and rabbit thromboplastin (n=1). Both fresh and frozen chelonian thromboplastin were superior in producing quantifiable TEG reaction time compared with all other reagents. These findings are consistent with the lack of an intrinsic pathway in turtles and confirmed a lack of coagulation in the turtle samples in response to mammalian thromboplastin. A TEG protocol was subsequently established for harvested species-specific frozen thromboplastin. The frozen thromboplastin reagent remained stable after one year of storage at −80°C. The developed protocol will be useful as a basis for future studies that aim to understand the pathophysiology of haemostatic disorders in various stranding conditions of sea turtles.