Cargando…
Predicting subway passenger flows under different traffic conditions
Passenger flow prediction is important for the operation, management, efficiency, and reliability of urban rail transit (subway) system. Here, we employ the large-scale subway smartcard data of Shenzhen, a major city of China, to predict dynamical passenger flows in the subway network. Four classica...
Autores principales: | Ling, Ximan, Huang, Zhiren, Wang, Chengcheng, Zhang, Fan, Wang, Pu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110475/ https://www.ncbi.nlm.nih.gov/pubmed/30148888 http://dx.doi.org/10.1371/journal.pone.0202707 |
Ejemplares similares
-
Machine learning approach for study on subway passenger flow
por: Park, Yujin, et al.
Publicado: (2022) -
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
por: Su, Guanghui, et al.
Publicado: (2022) -
Passenger-surface microbiome interactions in the subway of Mexico City
por: Vargas-Robles, Daniela, et al.
Publicado: (2020) -
An Investigation of Dynamic Responses and Head Injuries of Standing Subway Passengers during Collisions
por: Peng, Yong, et al.
Publicado: (2018) -
The impact of subway car interior design on passenger evacuation and boarding/alighting efficiency
por: He, Si-jun, et al.
Publicado: (2023)