Cargando…
Exposure to nicotine-derived nitrosamine ketone and arecoline synergistically facilitates tumor aggressiveness via overexpression of epidermal growth factor receptor and its downstream signaling in head and neck squamous cell carcinoma
Long-term nicotine-derived nitrosamine ketone (NNK) and arecoline exposure promotes carcinogenesis and head and neck squamous cell carcinoma (HNSCC) progression, although most associated data on the two were analyzed individually. The molecular mechanisms underlying tumor progression associated with...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110482/ https://www.ncbi.nlm.nih.gov/pubmed/30148841 http://dx.doi.org/10.1371/journal.pone.0201267 |
Sumario: | Long-term nicotine-derived nitrosamine ketone (NNK) and arecoline exposure promotes carcinogenesis and head and neck squamous cell carcinoma (HNSCC) progression, although most associated data on the two were analyzed individually. The molecular mechanisms underlying tumor progression associated with the synergistic effects of NNK and arecoline remain unclear. We treated SCC-25 and FaDu cells with NNK and arecoline (separately or in combination) for 3 months. Comparative analysis was performed to investigate the mechanism underlying the acquisition of properties related to tumor promotion, including stemness, anti-apoptosis, and resistance to HNSCC therapeutics. Long-term exposure to NNK and arecoline resulted in an increase in cancer stem cell properties, anti-apoptosis, and the resistance to cisplatin in HNSCC. We detected abundant epidermal growth factor receptor (EGFR) expression in HNSCC cells after combined treatment with NNK and arecoline. EGFR was pivotal in inducing tumor promotion and anti-apoptosis in cancer cells by inducing pAKT and NFκB. Combined treatment with NNK and arecoline synergistically facilitated tumor aggressiveness via EGFR–AKT signaling. Targeting EGFR–AKT signaling may be a feasible strategy for treating HNSCC. |
---|