Cargando…

The statistical shape of geometric reasoning

Geometric reasoning has an inherent dissonance: its abstract axioms and propositions refer to perfect, idealized entities, whereas its use in the physical world relies on dynamic perception of objects. How do abstract Euclidean concepts, dynamics, and statistics come together to support our intuitiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Hart, Yuval, Dillon, Moira R., Marantan, Andrew, Cardenas, Anna L., Spelke, Elizabeth, Mahadevan, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110727/
https://www.ncbi.nlm.nih.gov/pubmed/30150653
http://dx.doi.org/10.1038/s41598-018-30314-y
Descripción
Sumario:Geometric reasoning has an inherent dissonance: its abstract axioms and propositions refer to perfect, idealized entities, whereas its use in the physical world relies on dynamic perception of objects. How do abstract Euclidean concepts, dynamics, and statistics come together to support our intuitive geometric reasoning? Here, we address this question using a simple geometric task – planar triangle completion. An analysis of the distribution of participants’ errors in localizing a fragmented triangle’s missing corner reveals scale-dependent deviations from a deterministic Euclidean representation of planar triangles. By considering the statistical physics of the process characterized via a correlated random walk with a natural length scale, we explain these results and further predict participants’ estimates of the missing angle, measured in a second task. Our model also predicts the results of a categorical reasoning task about changes in the triangle size and shape even when such completion strategies need not be invoked. Taken together, our findings suggest a critical role for noisy physical processes in our reasoning about elementary Euclidean geometry.