Cargando…
A Survival Metadata Analysis Responsive Tool (SMART) for web-based analysis of patient survival and risk
Health information systems contain extensive amounts of patient data. Information relevant to public health and individuals’ medical histories are both available. In clinical research, the prediction of patient survival rates and identification of prognosis factors are major challenges. To alleviate...
Autores principales: | Chu, Yuan-Chia, Kuo, Wen-Tsung, Cheng, Yuan-Ren, Lee, Chung-Yuan, Shiau, Cheng-Ying, Tarng, Der-Cherng, Lai, Feipei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110739/ https://www.ncbi.nlm.nih.gov/pubmed/30150756 http://dx.doi.org/10.1038/s41598-018-31290-z |
Ejemplares similares
-
Author Correction: A Survival Metadata Analysis Responsive Tool (SMART) for web-based analysis of patient survival and risk
por: Chu, Yuan-Chia, et al.
Publicado: (2019) -
Sepsis and the Risks of Long-Term Renal Adverse Outcomes in Patients With Chronic Kidney Disease
por: Ou, Shuo-Ming, et al.
Publicado: (2022) -
Artificial Intelligence for Risk Prediction of Rehospitalization with Acute Kidney Injury in Sepsis Survivors
por: Ou, Shuo-Ming, et al.
Publicado: (2022) -
Dipyridamole decreases dialysis risk and improves survival in patients with pre-dialysis advanced chronic kidney disease
por: Kuo, Ko-Lin, et al.
Publicado: (2017) -
Metadata Correction: Importance-Performance Analysis of Personal Health Records in Taiwan: A Web-Based Survey
por: Rau, Hsiao-Hsien, et al.
Publicado: (2017)