Cargando…
Using Two-dimensional Principal Component Analysis and Rotation Forest for Prediction of Protein-Protein Interactions
The interaction among proteins is essential in all life activities, and it is the basis of all the metabolic activities of the cells. By studying the protein-protein interactions (PPIs), people can better interpret the function of protein, decoding the phenomenon of life, especially in the design of...
Autores principales: | Wang, Lei, You, Zhu-Hong, Yan, Xin, Xia, Shi-Xiong, Liu, Feng, Li, Li-Ping, Zhang, Wei, Zhou, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110764/ https://www.ncbi.nlm.nih.gov/pubmed/30150728 http://dx.doi.org/10.1038/s41598-018-30694-1 |
Ejemplares similares
-
Sequence-Based Prediction of Plant Protein-Protein Interactions by Combining Discrete Sine Transformation With Rotation Forest
por: Pan, Jie, et al.
Publicado: (2021) -
Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
por: You, Zhu-Hong, et al.
Publicado: (2013) -
Detection of Interactions between Proteins through Rotation Forest and Local Phase Quantization Descriptors
por: Wong, Leon, et al.
Publicado: (2015) -
Principal component analysis of alpha-helix deformations in transmembrane proteins
por: Bevacqua, Alexander, et al.
Publicado: (2021) -
RoFDT: Identification of Drug–Target Interactions from Protein Sequence and Drug Molecular Structure Using Rotation Forest
por: Wang, Ying, et al.
Publicado: (2022)