Cargando…
Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots
All-inorganic CsPbX(3) (X = Cl, Br, and I) perovskite quantum dots (PeQDs) have shown great promise in optoelectronics and photovoltaics owing to their outstanding linear optical properties; however, nonlinear upconversion is limited by the small cross-section of multiphoton absorption, necessitatin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110834/ https://www.ncbi.nlm.nih.gov/pubmed/30150637 http://dx.doi.org/10.1038/s41467-018-05947-2 |
Sumario: | All-inorganic CsPbX(3) (X = Cl, Br, and I) perovskite quantum dots (PeQDs) have shown great promise in optoelectronics and photovoltaics owing to their outstanding linear optical properties; however, nonlinear upconversion is limited by the small cross-section of multiphoton absorption, necessitating high power density excitation. Herein, we report a convenient and versatile strategy to fine tuning the upconversion luminescence in CsPbX(3) PeQDs through sensitization by lanthanide-doped nanoparticles. Full-color emission with wavelengths beyond the availability of lanthanides is achieved through tailoring of the PeQDs bandgap, in parallel with the inherent high conversion efficiency of energy transfer upconversion under low power density excitation. Importantly, the luminescent lifetimes of the excitons can be enormously lengthened from the intrinsic nanosecond scale to milliseconds depending on the lifetimes of lanthanide ions. These findings provide a general approach to stimulate photon upconversion in PeQDs, thereby opening up a new avenue for exploring novel and versatile applications of PeQDs. |
---|