Cargando…
Application of Machine Learning to Automated Analysis of Cerebral Edema in Large Cohorts of Ischemic Stroke Patients
Cerebral edema contributes to neurological deterioration and death after hemispheric stroke but there remains no effective means of preventing or accurately predicting its occurrence. Big data approaches may provide insights into the biologic variability and genetic contributions to severity and tim...
Autores principales: | Dhar, Rajat, Chen, Yasheng, An, Hongyu, Lee, Jin-Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110910/ https://www.ncbi.nlm.nih.gov/pubmed/30186224 http://dx.doi.org/10.3389/fneur.2018.00687 |
Ejemplares similares
-
Accelerating Prediction of Malignant Cerebral Edema after Ischemic Stroke with Automated Image Analysis and Explainable Neural Networks
por: Foroushani, Hossein Mohammadian, et al.
Publicado: (2022) -
Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs
por: Chen, Yasheng, et al.
Publicado: (2016) -
Automated Measurement of Net Water Uptake From Baseline and Follow-Up CTs in Patients With Large Vessel Occlusion Stroke
por: Kumar, Atul, et al.
Publicado: (2022) -
Predicting futile recanalization, malignant cerebral edema, and cerebral herniation using intelligible ensemble machine learning following mechanical thrombectomy for acute ischemic stroke
por: Zeng, Weixiong, et al.
Publicado: (2022) -
Machine Learning in Acute Ischemic Stroke Neuroimaging
por: Kamal, Haris, et al.
Publicado: (2018)