Cargando…

Human Error Probability Assessment During Maintenance Activities of Marine Systems

BACKGROUND: Maintenance operations on-board ships are highly demanding. Maintenance operations are intensive activities requiring high man–machine interactions in challenging and evolving conditions. The evolving conditions are weather conditions, workplace temperature, ship motion, noise and vibrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, Rabiul, Khan, Faisal, Abbassi, Rouzbeh, Garaniya, Vikram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Occupational Safety and Health Research Institute 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111134/
https://www.ncbi.nlm.nih.gov/pubmed/30363076
http://dx.doi.org/10.1016/j.shaw.2017.06.008
_version_ 1783350598231392256
author Islam, Rabiul
Khan, Faisal
Abbassi, Rouzbeh
Garaniya, Vikram
author_facet Islam, Rabiul
Khan, Faisal
Abbassi, Rouzbeh
Garaniya, Vikram
author_sort Islam, Rabiul
collection PubMed
description BACKGROUND: Maintenance operations on-board ships are highly demanding. Maintenance operations are intensive activities requiring high man–machine interactions in challenging and evolving conditions. The evolving conditions are weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress. For example, extreme weather condition affects seafarers' performance, increasing the chances of error, and, consequently, can cause injuries or fatalities to personnel. An effective human error probability model is required to better manage maintenance on-board ships. The developed model would assist in developing and maintaining effective risk management protocols. Thus, the objective of this study is to develop a human error probability model considering various internal and external factors affecting seafarers' performance. METHODS: The human error probability model is developed using probability theory applied to Bayesian network. The model is tested using the data received through the developed questionnaire survey of >200 experienced seafarers with >5 years of experience. The model developed in this study is used to find out the reliability of human performance on particular maintenance activities. RESULTS: The developed methodology is tested on the maintenance of marine engine's cooling water pump for engine department and anchor windlass for deck department. In the considered case studies, human error probabilities are estimated in various scenarios and the results are compared between the scenarios and the different seafarer categories. The results of the case studies for both departments are also compared. CONCLUSION: The developed model is effective in assessing human error probabilities. These probabilities would get dynamically updated as and when new information is available on changes in either internal (i.e., training, experience, and fatigue) or external (i.e., environmental and operational conditions such as weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress) factors.
format Online
Article
Text
id pubmed-6111134
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Occupational Safety and Health Research Institute
record_format MEDLINE/PubMed
spelling pubmed-61111342018-10-25 Human Error Probability Assessment During Maintenance Activities of Marine Systems Islam, Rabiul Khan, Faisal Abbassi, Rouzbeh Garaniya, Vikram Saf Health Work Original Article BACKGROUND: Maintenance operations on-board ships are highly demanding. Maintenance operations are intensive activities requiring high man–machine interactions in challenging and evolving conditions. The evolving conditions are weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress. For example, extreme weather condition affects seafarers' performance, increasing the chances of error, and, consequently, can cause injuries or fatalities to personnel. An effective human error probability model is required to better manage maintenance on-board ships. The developed model would assist in developing and maintaining effective risk management protocols. Thus, the objective of this study is to develop a human error probability model considering various internal and external factors affecting seafarers' performance. METHODS: The human error probability model is developed using probability theory applied to Bayesian network. The model is tested using the data received through the developed questionnaire survey of >200 experienced seafarers with >5 years of experience. The model developed in this study is used to find out the reliability of human performance on particular maintenance activities. RESULTS: The developed methodology is tested on the maintenance of marine engine's cooling water pump for engine department and anchor windlass for deck department. In the considered case studies, human error probabilities are estimated in various scenarios and the results are compared between the scenarios and the different seafarer categories. The results of the case studies for both departments are also compared. CONCLUSION: The developed model is effective in assessing human error probabilities. These probabilities would get dynamically updated as and when new information is available on changes in either internal (i.e., training, experience, and fatigue) or external (i.e., environmental and operational conditions such as weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress) factors. Occupational Safety and Health Research Institute 2018-03 2017-06-28 /pmc/articles/PMC6111134/ /pubmed/30363076 http://dx.doi.org/10.1016/j.shaw.2017.06.008 Text en © 2017 Occupational Safety and Health Research Institute http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Islam, Rabiul
Khan, Faisal
Abbassi, Rouzbeh
Garaniya, Vikram
Human Error Probability Assessment During Maintenance Activities of Marine Systems
title Human Error Probability Assessment During Maintenance Activities of Marine Systems
title_full Human Error Probability Assessment During Maintenance Activities of Marine Systems
title_fullStr Human Error Probability Assessment During Maintenance Activities of Marine Systems
title_full_unstemmed Human Error Probability Assessment During Maintenance Activities of Marine Systems
title_short Human Error Probability Assessment During Maintenance Activities of Marine Systems
title_sort human error probability assessment during maintenance activities of marine systems
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111134/
https://www.ncbi.nlm.nih.gov/pubmed/30363076
http://dx.doi.org/10.1016/j.shaw.2017.06.008
work_keys_str_mv AT islamrabiul humanerrorprobabilityassessmentduringmaintenanceactivitiesofmarinesystems
AT khanfaisal humanerrorprobabilityassessmentduringmaintenanceactivitiesofmarinesystems
AT abbassirouzbeh humanerrorprobabilityassessmentduringmaintenanceactivitiesofmarinesystems
AT garaniyavikram humanerrorprobabilityassessmentduringmaintenanceactivitiesofmarinesystems