Cargando…
Using Deep Learning to Identify Utility Poles with Crossarms and Estimate Their Locations from Google Street View Images
Traditional methods of detecting and mapping utility poles are inefficient and costly because of the demand for visual interpretation with quality data sources or intense field inspection. The advent of deep learning for object detection provides an opportunity for detecting utility poles from side-...
Autores principales: | Zhang, Weixing, Witharana, Chandi, Li, Weidong, Zhang, Chuanrong, Li, Xiaojiang, Parent, Jason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111250/ https://www.ncbi.nlm.nih.gov/pubmed/30071580 http://dx.doi.org/10.3390/s18082484 |
Ejemplares similares
-
Parcel feature data derived from Google Street View images for urban land use classification in Brooklyn, New York Cityfor urban land use classification in Brooklyn, New York Cityretain-->
por: Zhang, Weixing, et al.
Publicado: (2017) -
MAPCERN links to Google Street View
por: Matilda Heron
Publicado: (2015) -
Alcohol in urban streetscapes: a comparison of the use of Google Street View and on-street observation
por: Clews, Chris, et al.
Publicado: (2016) -
Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain
por: Goel, Rahul, et al.
Publicado: (2018) -
Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States
por: Gebru, Timnit, et al.
Publicado: (2017)