Cargando…
Active Potentiometry for Dissolved Oxygen Monitoring with Platinum Electrodes
Potentiometric oxygen monitoring using platinum as the electrode material was enabled by the combination of conventional potentiometry with active prepolarization protocols, what we call active potentiometry. The obtained logarithmic transfer function is well-suited for the measurement of dissolved...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111276/ https://www.ncbi.nlm.nih.gov/pubmed/30042309 http://dx.doi.org/10.3390/s18082404 |
Sumario: | Potentiometric oxygen monitoring using platinum as the electrode material was enabled by the combination of conventional potentiometry with active prepolarization protocols, what we call active potentiometry. The obtained logarithmic transfer function is well-suited for the measurement of dissolved oxygen in biomedical applications, as the physiological oxygen concentration typically varies over several decades. We describe the application of active potentiometry in phosphate buffered salt solution at different pH and ion strength. Sensitivity was in the range of 60 mV/dec oxygen concentration; the transfer function deviated from logarithmic behavior for smaller oxygen concentration and higher ion strength of the electrolyte. Long-term stability was demonstrated for 60 h. Based on these measurement results and additional cyclic voltammetry investigations a model is discussed to explain the potential forming mechanism. The described method of active potentiometry is applicable to many different potentiometric sensors possibly enhancing sensitivity or selectivity for a specific parameter. |
---|