Cargando…
High-Dimensional Probabilistic Fingerprinting in Wireless Sensor Networks Based on a Multivariate Gaussian Mixture Model
The extensive deployment of wireless infrastructure provides a low-cost way to track mobile users in indoor environment. This paper demonstrates a prototype model of an accurate and reliable room location awareness system in a real public environment in which three typical problems arise. Firstly, a...
Autores principales: | Li, Yan, Williams, Simon, Moran, Bill, Kealy, Allison, Retscher, Guenther |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111281/ https://www.ncbi.nlm.nih.gov/pubmed/30096849 http://dx.doi.org/10.3390/s18082602 |
Ejemplares similares
-
Diffusion-Based EM Algorithm for Distributed Estimation of Gaussian Mixtures in Wireless Sensor Networks
por: Weng, Yang, et al.
Publicado: (2011) -
Development of a Smartphone-Based University Library Navigation and Information Service Employing Wi-Fi Location Fingerprinting
por: Retscher, Guenther, et al.
Publicado: (2021) -
Target Coverage in Wireless Sensor Networks with Probabilistic Sensors
por: Shan, Anxing, et al.
Publicado: (2016) -
Gaussian synapses for probabilistic neural networks
por: Sebastian, Amritanand, et al.
Publicado: (2019) -
Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians()
por: Lambert, Christian, et al.
Publicado: (2013)