Cargando…
Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms
In this study, land subsidence susceptibility was assessed for a study area in South Korea by using four machine learning models including Bayesian Logistic Regression (BLR), Support Vector Machine (SVM), Logistic Model Tree (LMT) and Alternate Decision Tree (ADTree). Eight conditioning factors were...
Autores principales: | Tien Bui, Dieu, Shahabi, Himan, Shirzadi, Ataollah, Chapi, Kamran, Pradhan, Biswajeet, Chen, Wei, Khosravi, Khabat, Panahi, Mahdi, Bin Ahmad, Baharin, Saro, Lee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111310/ https://www.ncbi.nlm.nih.gov/pubmed/30065216 http://dx.doi.org/10.3390/s18082464 |
Ejemplares similares
-
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods
por: Bui, Dieu Tien, et al.
Publicado: (2018) -
Author Correction: Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods
por: Bui, Dieu Tien, et al.
Publicado: (2021) -
A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran)
por: Tien Bui, Dieu, et al.
Publicado: (2019) -
Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM(+) Images
por: Nhu, Viet-Ha, et al.
Publicado: (2020)