Cargando…
Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques
Pattern recognition of electromyography (EMG) signals can potentially improve the performance of myoelectric control for upper limb prostheses with respect to current clinical approaches based on direct control. However, the choice of features for classification is challenging and impacts long-term...
Autores principales: | Zia ur Rehman, Muhammad, Waris, Asim, Gilani, Syed Omer, Jochumsen, Mads, Niazi, Imran Khan, Jamil, Mohsin, Farina, Dario, Kamavuako, Ernest Nlandu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111443/ https://www.ncbi.nlm.nih.gov/pubmed/30071617 http://dx.doi.org/10.3390/s18082497 |
Ejemplares similares
-
A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN
por: Waris, Asim, et al.
Publicado: (2020) -
Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography
por: Jochumsen, Mads, et al.
Publicado: (2020) -
A comparative study of motion detection with FMG and sEMG methods for assistive applications
por: Islam, Muhammad Raza Ul, et al.
Publicado: (2020) -
Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG
por: Asif, Ali Raza, et al.
Publicado: (2020) -
Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms
por: Jochumsen, Mads, et al.
Publicado: (2017)