Cargando…

Cell-Specific Protective Signaling Induced by the Novel AT2R-Agonist NP-6A4 on Human Endothelial and Smooth Muscle Cells

Cardiovascular disease incidence continues to rise and new treatment paradigms are warranted. We reported previously that activation of Angiotensin II receptor (encoded by the X-linked Agtr2 gene) by a new peptide agonist, NP-6A4, was more effective in protecting mouse cardiomyocyte HL-1 cells and h...

Descripción completa

Detalles Bibliográficos
Autores principales: Toedebusch, Ryan, Belenchia, Anthony, Pulakat, Lakshmi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111462/
https://www.ncbi.nlm.nih.gov/pubmed/30186168
http://dx.doi.org/10.3389/fphar.2018.00928
Descripción
Sumario:Cardiovascular disease incidence continues to rise and new treatment paradigms are warranted. We reported previously that activation of Angiotensin II receptor (encoded by the X-linked Agtr2 gene) by a new peptide agonist, NP-6A4, was more effective in protecting mouse cardiomyocyte HL-1 cells and human coronary artery vascular smooth muscle cells (hCAVSMCs) from acute nutrient deficiency than other drugs tested. To elucidate further the protective effects of NP-6A4 in human cells, we studied the effects of NP-6A4 treatment on functions of human coronary artery endothelial cells (hCAECs), and hCAVSMCs. In hCAVSMCs, NP-6A4 (1 μM) increased Agtr2 mRNA (sixfold, p < 0.05) after 12-h exposure, whereas in hCAECs, significant increase in Agtr2 mRNA (hCAECs: eightfold) was observed after prolonged exposure. Interestingly, NP-6A4 treatment (1 μM, 12 h) increased AT2R protein levels in all human cells tested. Pre-treatment with AT2R-antagonist PD123319 (20 μM) and anti-AT2R siRNA (1 μM) suppressed this effect. Thus, NP-6A4 activates a positive feedback loop for AT2R expression and signaling in hCAVSMCs and hCAECs. NP-6A4 (1–20 μM) increased cell index (CI) of hCAVSMCs as determined by real time cell analyzer (RTCA), indicating that high concentrations of NP-6A4 were not cytotoxic for hCAVSMCs, rather promoting better cell attachment and growth. Seahorse Extracellular Flux Assay revealed that NP-6A4 (1 μM) treatment for 7 days increased whole cell-based mitochondrial parameters of hCAVSMCs, specifically maximal respiration (p < 0.05), spare respiratory capacity (p < 0.05) and ATP production (p < 0.05). NP-6A4 (1 μM; 7 days) also suppressed Reactive Oxygen Species (ROS) in hCAVSMCs. Exposure to Doxorubicin (DOXO) (1 μM) increased ROS in hCAVSMCs and this effect was suppressed by NP-6A4 (1 μM). In hCAECs grown in complete medium, NP-6A4 (1 μM) and Ang II (1 μM) exerted similar changes in CI. Additionally, NP-6A4 (5 μM: 12 h) increased expression of eNOS (sixfold, p < 0.05) and generation of nitric oxide (1.3-fold, p < 0.05) in hCAECs and pre-treatment with PD123319 (20 μM) suppressed this effect partially (65%). Finally, NP-6A4 decreased phosphorylation of Jun-N-terminal kinase, implicated in apoptosis of ECs in atherosclerotic sites. Taken together, NP-6A4, through its ability to increase AT2R expression and signaling, exerts different cell-specific protective effects in human VSMCs and ECs.