Cargando…
Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6)
Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first ha...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111516/ https://www.ncbi.nlm.nih.gov/pubmed/30186172 http://dx.doi.org/10.3389/fphar.2018.00941 |
_version_ | 1783350669622640640 |
---|---|
author | Karakus, Emre Zahner, Daniel Grosser, Gary Leidolf, Regina Gundogdu, Cemal Sánchez-Guijo, Alberto Wudy, Stefan A. Geyer, Joachim |
author_facet | Karakus, Emre Zahner, Daniel Grosser, Gary Leidolf, Regina Gundogdu, Cemal Sánchez-Guijo, Alberto Wudy, Stefan A. Geyer, Joachim |
author_sort | Karakus, Emre |
collection | PubMed |
description | Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E(1)S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10(-9) M estradiol as well as by E(1)S with EC(50) of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E(1)S stimulation with EC(50) of 21.7 nM. The E(1)S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. In conclusion: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E(1)S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E(1)S uptake carriers for anti-proliferative breast cancer therapy. |
format | Online Article Text |
id | pubmed-6111516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61115162018-09-05 Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) Karakus, Emre Zahner, Daniel Grosser, Gary Leidolf, Regina Gundogdu, Cemal Sánchez-Guijo, Alberto Wudy, Stefan A. Geyer, Joachim Front Pharmacol Pharmacology Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E(1)S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10(-9) M estradiol as well as by E(1)S with EC(50) of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E(1)S stimulation with EC(50) of 21.7 nM. The E(1)S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. In conclusion: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E(1)S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E(1)S uptake carriers for anti-proliferative breast cancer therapy. Frontiers Media S.A. 2018-08-21 /pmc/articles/PMC6111516/ /pubmed/30186172 http://dx.doi.org/10.3389/fphar.2018.00941 Text en Copyright © 2018 Karakus, Zahner, Grosser, Leidolf, Gundogdu, Sánchez-Guijo, Wudy and Geyer. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Karakus, Emre Zahner, Daniel Grosser, Gary Leidolf, Regina Gundogdu, Cemal Sánchez-Guijo, Alberto Wudy, Stefan A. Geyer, Joachim Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) |
title | Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) |
title_full | Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) |
title_fullStr | Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) |
title_full_unstemmed | Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) |
title_short | Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6) |
title_sort | estrone-3-sulfate stimulates the proliferation of t47d breast cancer cells stably transfected with the sodium-dependent organic anion transporter soat (slc10a6) |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111516/ https://www.ncbi.nlm.nih.gov/pubmed/30186172 http://dx.doi.org/10.3389/fphar.2018.00941 |
work_keys_str_mv | AT karakusemre estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT zahnerdaniel estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT grossergary estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT leidolfregina estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT gundogducemal estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT sanchezguijoalberto estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT wudystefana estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 AT geyerjoachim estrone3sulfatestimulatestheproliferationoft47dbreastcancercellsstablytransfectedwiththesodiumdependentorganicaniontransportersoatslc10a6 |