Cargando…
TLTD: A Testing Framework for Learning-Based IoT Traffic Detection Systems
With the popularization of IoT (Internet of Things) devices and the continuous development of machine learning algorithms, learning-based IoT malicious traffic detection technologies have gradually matured. However, learning-based IoT traffic detection models are usually very vulnerable to adversari...
Autores principales: | Liu, Xiaolei, Zhang, Xiaosong, Guizani, Nadra, Lu, Jiazhong, Zhu, Qingxin, Du, Xiaojiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111594/ https://www.ncbi.nlm.nih.gov/pubmed/30103460 http://dx.doi.org/10.3390/s18082630 |
Ejemplares similares
-
Adversarial Samples on Android Malware Detection Systems for IoT Systems
por: Liu, Xiaolei, et al.
Publicado: (2019) -
A Framework for Malicious Traffic Detection in IoT Healthcare Environment
por: Hussain, Faisal, et al.
Publicado: (2021) -
Detecting IoT User Behavior and Sensitive Information in Encrypted IoT-App Traffic
por: Subahi, Alanoud, et al.
Publicado: (2019) -
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks
por: Wadud, Zahid, et al.
Publicado: (2017) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022)