Cargando…
An Occlusion-Aware Framework for Real-Time 3D Pose Tracking
Random forest-based methods for 3D temporal tracking over an image sequence have gained increasing prominence in recent years. They do not require object’s texture and only use the raw depth images and previous pose as input, which makes them especially suitable for textureless objects. These method...
Autores principales: | Fu, Mingliang, Leng, Yuquan, Luo, Haitao, Zhou, Weijia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111635/ https://www.ncbi.nlm.nih.gov/pubmed/30127294 http://dx.doi.org/10.3390/s18082734 |
Ejemplares similares
-
DeepHMap++: Combined Projection Grouping and Correspondence Learning for Full DoF Pose Estimation
por: Fu, Mingliang, et al.
Publicado: (2019) -
Real-time pedestrian pose estimation, tracking and localization for social distancing
por: Abdulrahman, Bilal, et al.
Publicado: (2022) -
G2O-Pose: Real-Time Monocular 3D Human Pose Estimation Based on General Graph Optimization
por: Sun, Haixun, et al.
Publicado: (2022) -
Fusion of Multiple Lidars and Inertial Sensors for the Real-Time Pose Tracking of Human Motion
por: Patil, Ashok Kumar, et al.
Publicado: (2020) -
Multi-Person Pose Estimation using an Orientation and Occlusion Aware Deep Learning Network
por: Gu, Yanlei, et al.
Publicado: (2020)