Cargando…
Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration
BACKGROUND: Fibroblasts were the main seed cells in the studies of tissue engineering of the pelvic floor ligament. Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were widely studied but at various concentrations. This study aimed to optimize the concentrations of combined b...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111681/ https://www.ncbi.nlm.nih.gov/pubmed/30127219 http://dx.doi.org/10.4103/0366-6999.239301 |
_version_ | 1783350706600673280 |
---|---|
author | Jia, Yuan-Yuan Zhou, Jing-Yi Chang, Yue An, Fang Li, Xiao-Wei Xu, Xiao-Yue Sun, Xiu-Li Xiong, Chun-Yang Wang, Jian-Liu |
author_facet | Jia, Yuan-Yuan Zhou, Jing-Yi Chang, Yue An, Fang Li, Xiao-Wei Xu, Xiao-Yue Sun, Xiu-Li Xiong, Chun-Yang Wang, Jian-Liu |
author_sort | Jia, Yuan-Yuan |
collection | PubMed |
description | BACKGROUND: Fibroblasts were the main seed cells in the studies of tissue engineering of the pelvic floor ligament. Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were widely studied but at various concentrations. This study aimed to optimize the concentrations of combined bFGF and EGF by evaluating their effects on proliferation and collagen secretion of fibroblasts. METHODS: Fibroblasts were differentiated from rat adipose mesenchymal stem cells (ADSCs). Flow cytometry and immunohistochemistry were used for cell identification. The growth factors were applied at concentrations of 0, 1, 10, and 100 ng/ml as three groups: (1) bFGF alone, (2) EGF alone, and (3) bFGF mixed with EGF. Cell proliferation was evaluated by Cell Counting Kit-8 assays. Expression of Type I and III collagen (Col-I and Col-III) mRNAs was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. Statistical analysis was performed with SPSS software and GraphPad Prism using one-way analysis of variance and multiple t-test. RESULTS: ADSCs were successfully isolated from rat adipose tissue as identified by expression of typical surface markers CD29, CD44, CD90, and CD45 in flow cytometry. Fibroblasts induced from ADSC, compared with ADSCs, were with higher mRNA expression levels of Col I and Col III (F = 1.29, P = 0.0390). bFGF, EGF, and the mixture of bFGF with EGF can enhanced fibroblasts proliferation, and the concentration of 10 ng/ml of the mixture of bFGF with EGF displayed most effectively (all P < 0.05). The expression levels of Col-I and Col-III mRNAs in fibroblasts displayed significant increases in the 10 ng/ml bFGF combined with EGF group (all P < 0.05). CONCLUSIONS: The optimal concentration of both bFGF and EGF to promote cell proliferation and collagen expression in fibroblasts was 10 ng/ml at which fibroblasts grew faster and secreted more Type I and III collagens into the extracellular matrix, which might contribute to the stability of the pelvic floor microenvironment. |
format | Online Article Text |
id | pubmed-6111681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-61116812018-09-06 Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration Jia, Yuan-Yuan Zhou, Jing-Yi Chang, Yue An, Fang Li, Xiao-Wei Xu, Xiao-Yue Sun, Xiu-Li Xiong, Chun-Yang Wang, Jian-Liu Chin Med J (Engl) Original Article BACKGROUND: Fibroblasts were the main seed cells in the studies of tissue engineering of the pelvic floor ligament. Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were widely studied but at various concentrations. This study aimed to optimize the concentrations of combined bFGF and EGF by evaluating their effects on proliferation and collagen secretion of fibroblasts. METHODS: Fibroblasts were differentiated from rat adipose mesenchymal stem cells (ADSCs). Flow cytometry and immunohistochemistry were used for cell identification. The growth factors were applied at concentrations of 0, 1, 10, and 100 ng/ml as three groups: (1) bFGF alone, (2) EGF alone, and (3) bFGF mixed with EGF. Cell proliferation was evaluated by Cell Counting Kit-8 assays. Expression of Type I and III collagen (Col-I and Col-III) mRNAs was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. Statistical analysis was performed with SPSS software and GraphPad Prism using one-way analysis of variance and multiple t-test. RESULTS: ADSCs were successfully isolated from rat adipose tissue as identified by expression of typical surface markers CD29, CD44, CD90, and CD45 in flow cytometry. Fibroblasts induced from ADSC, compared with ADSCs, were with higher mRNA expression levels of Col I and Col III (F = 1.29, P = 0.0390). bFGF, EGF, and the mixture of bFGF with EGF can enhanced fibroblasts proliferation, and the concentration of 10 ng/ml of the mixture of bFGF with EGF displayed most effectively (all P < 0.05). The expression levels of Col-I and Col-III mRNAs in fibroblasts displayed significant increases in the 10 ng/ml bFGF combined with EGF group (all P < 0.05). CONCLUSIONS: The optimal concentration of both bFGF and EGF to promote cell proliferation and collagen expression in fibroblasts was 10 ng/ml at which fibroblasts grew faster and secreted more Type I and III collagens into the extracellular matrix, which might contribute to the stability of the pelvic floor microenvironment. Medknow Publications & Media Pvt Ltd 2018-09-05 /pmc/articles/PMC6111681/ /pubmed/30127219 http://dx.doi.org/10.4103/0366-6999.239301 Text en Copyright: © 2018 Chinese Medical Journal http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Jia, Yuan-Yuan Zhou, Jing-Yi Chang, Yue An, Fang Li, Xiao-Wei Xu, Xiao-Yue Sun, Xiu-Li Xiong, Chun-Yang Wang, Jian-Liu Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration |
title | Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration |
title_full | Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration |
title_fullStr | Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration |
title_full_unstemmed | Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration |
title_short | Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration |
title_sort | effect of optimized concentrations of basic fibroblast growth factor and epidermal growth factor on proliferation of fibroblasts and expression of collagen: related to pelvic floor tissue regeneration |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111681/ https://www.ncbi.nlm.nih.gov/pubmed/30127219 http://dx.doi.org/10.4103/0366-6999.239301 |
work_keys_str_mv | AT jiayuanyuan effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT zhoujingyi effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT changyue effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT anfang effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT lixiaowei effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT xuxiaoyue effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT sunxiuli effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT xiongchunyang effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration AT wangjianliu effectofoptimizedconcentrationsofbasicfibroblastgrowthfactorandepidermalgrowthfactoronproliferationoffibroblastsandexpressionofcollagenrelatedtopelvicfloortissueregeneration |