Cargando…
A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors
We designed and evaluated an assumption-free, deep learning-based methodology for animal health monitoring, specifically for the early detection of respiratory disease in growing pigs based on environmental sensor data. Two recurrent neural networks (RNNs), each comprising gated recurrent units (GRU...
Autores principales: | Cowton, Jake, Kyriazakis, Ilias, Plötz, Thomas, Bacardit, Jaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111702/ https://www.ncbi.nlm.nih.gov/pubmed/30072607 http://dx.doi.org/10.3390/s18082521 |
Ejemplares similares
-
Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs
por: Alameer, Ali, et al.
Publicado: (2020) -
Hotspots and bottlenecks for the enhancement of the environmental sustainability of pig systems, with emphasis on European pig systems
por: Pexas, Georgios, et al.
Publicado: (2023) -
Automated tracking to measure behavioural changes in pigs for health and welfare monitoring
por: Matthews, Stephen G., et al.
Publicado: (2017) -
Early detection of health and welfare compromises through automated detection of behavioural changes in pigs
por: Matthews, Stephen G., et al.
Publicado: (2016) -
Porcine lie detectors: Automatic quantification of posture state and transitions in sows using inertial sensors
por: Thompson, Robin, et al.
Publicado: (2016)