Cargando…
Bioinformatic analysis suggests that UGT2B15 activates the Hippo-YAP signaling pathway leading to the pathogenesis of gastric cancer
Gastric cancer (GC) is one of the most common malignancies that threatens human health. As the molecular mechanisms unerlying GC are not completely understood, identification of genes related to GC could provide new insights into gene function as well as potential treatment targets. We discovered th...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111708/ https://www.ncbi.nlm.nih.gov/pubmed/30066917 http://dx.doi.org/10.3892/or.2018.6604 |
Sumario: | Gastric cancer (GC) is one of the most common malignancies that threatens human health. As the molecular mechanisms unerlying GC are not completely understood, identification of genes related to GC could provide new insights into gene function as well as potential treatment targets. We discovered that UGT2B15 may contribute to the pathogenesis and progression of GC using GEO data and bioinformatic analysis. Using TCGA data, UGT2B15 mRNA was found to be significantly overexpressed in GC tissues; patients with higher UGT2B15 had a poorer prognosis. It was further discovered that UGT2B15 and FOXA1 were both upregulated, and UGT2B15 and Foxa1 were positively correlated in GC. It is known that Foxa1 is a vital threshold to activate the Hippo-YAP signaling pathway. In addition, we suggest that a potential molecular mechanisms includes UGT2B15 which may upregulate Foxa1, activate the Hippo-YAP signaling pathway and contribute to the development of GC. Taken together, our findings demonstrate that UGT2B15 may be an oncogene in GC and is a promising therapeutic target for cancer treatment. |
---|