Cargando…
An Efficient Sampling-Based Algorithms Using Active Learning and Manifold Learning for Multiple Unmanned Aerial Vehicle Task Allocation under Uncertainty
This paper presents a sampling-based approximation for multiple unmanned aerial vehicle (UAV) task allocation under uncertainty. Our goal is to reduce the amount of calculations and improve the accuracy of the algorithm. For this purpose, Gaussian process regression models are constructed from an un...
Autores principales: | Fu, Xiaowei, Wang, Hui, Li, Bin, Gao, Xiaoguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111736/ https://www.ncbi.nlm.nih.gov/pubmed/30103561 http://dx.doi.org/10.3390/s18082645 |
Ejemplares similares
-
Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind
por: Luo, He, et al.
Publicado: (2018) -
An Optimal Routing Algorithm for Unmanned Aerial Vehicles
por: Kim, Sooyeon, et al.
Publicado: (2021) -
A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles
por: Liu, Zhong, et al.
Publicado: (2018) -
Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
por: Li, Shuyang, et al.
Publicado: (2021) -
Localization System for Lightweight Unmanned Aerial Vehicles in Inspection Tasks
por: Benjumea, Diego, et al.
Publicado: (2021)