Cargando…
A Novel Semi-Supervised Feature Extraction Method and Its Application in Automotive Assembly Fault Diagnosis Based on Vision Sensor Data
The fault diagnosis of dimensional variation plays an essential role in the production of an automotive body. However, it is difficult to identify faults based on small labeled sample data using traditional supervised learning methods. The present study proposed a novel feature extraction method nam...
Autores principales: | Zeng, Xuan, Yin, Shi-Bin, Guo, Yin, Lin, Jia-Rui, Zhu, Ji-Gui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111744/ https://www.ncbi.nlm.nih.gov/pubmed/30081511 http://dx.doi.org/10.3390/s18082545 |
Ejemplares similares
-
Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning
por: Mao, Weiyun, et al.
Publicado: (2022) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Vision-Based Traffic Data Collection Sensor for Automotive Applications
por: Llorca, David F., et al.
Publicado: (2010) -
Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism
por: Liu, Shun, et al.
Publicado: (2023) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022)