Cargando…

A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation

In this paper, we develop new methods to assess safety risks of an integrated GNSS/LiDAR navigation system for highly automated vehicle (HAV) applications. LiDAR navigation requires feature extraction (FE) and data association (DA). In prior work, we established an FE and DA risk prediction algorith...

Descripción completa

Detalles Bibliográficos
Autores principales: Joerger, Mathieu, Duenas Arana, Guillermo, Spenko, Matthew, Pervan, Boris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111790/
https://www.ncbi.nlm.nih.gov/pubmed/30127312
http://dx.doi.org/10.3390/s18082740
_version_ 1783350731434098688
author Joerger, Mathieu
Duenas Arana, Guillermo
Spenko, Matthew
Pervan, Boris
author_facet Joerger, Mathieu
Duenas Arana, Guillermo
Spenko, Matthew
Pervan, Boris
author_sort Joerger, Mathieu
collection PubMed
description In this paper, we develop new methods to assess safety risks of an integrated GNSS/LiDAR navigation system for highly automated vehicle (HAV) applications. LiDAR navigation requires feature extraction (FE) and data association (DA). In prior work, we established an FE and DA risk prediction algorithm assuming that the set of extracted features matched the set of mapped landmarks. This paper addresses these limiting assumptions by incorporating a Kalman filter innovation-based test to detect unwanted object (UO). UO include unmapped, moving, and wrongly excluded landmarks. An integrity risk bound is derived to account for the risk of not detecting UO. Direct simulations and preliminary testing help quantify the impact on integrity and continuity of UO monitoring in an example GNSS/LiDAR implementation.
format Online
Article
Text
id pubmed-6111790
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61117902018-08-30 A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation Joerger, Mathieu Duenas Arana, Guillermo Spenko, Matthew Pervan, Boris Sensors (Basel) Article In this paper, we develop new methods to assess safety risks of an integrated GNSS/LiDAR navigation system for highly automated vehicle (HAV) applications. LiDAR navigation requires feature extraction (FE) and data association (DA). In prior work, we established an FE and DA risk prediction algorithm assuming that the set of extracted features matched the set of mapped landmarks. This paper addresses these limiting assumptions by incorporating a Kalman filter innovation-based test to detect unwanted object (UO). UO include unmapped, moving, and wrongly excluded landmarks. An integrity risk bound is derived to account for the risk of not detecting UO. Direct simulations and preliminary testing help quantify the impact on integrity and continuity of UO monitoring in an example GNSS/LiDAR implementation. MDPI 2018-08-20 /pmc/articles/PMC6111790/ /pubmed/30127312 http://dx.doi.org/10.3390/s18082740 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Joerger, Mathieu
Duenas Arana, Guillermo
Spenko, Matthew
Pervan, Boris
A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation
title A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation
title_full A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation
title_fullStr A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation
title_full_unstemmed A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation
title_short A New Approach to Unwanted-Object Detection in GNSS/LiDAR-Based Navigation
title_sort new approach to unwanted-object detection in gnss/lidar-based navigation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111790/
https://www.ncbi.nlm.nih.gov/pubmed/30127312
http://dx.doi.org/10.3390/s18082740
work_keys_str_mv AT joergermathieu anewapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT duenasaranaguillermo anewapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT spenkomatthew anewapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT pervanboris anewapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT joergermathieu newapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT duenasaranaguillermo newapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT spenkomatthew newapproachtounwantedobjectdetectioningnsslidarbasednavigation
AT pervanboris newapproachtounwantedobjectdetectioningnsslidarbasednavigation