Cargando…
Spatial Extension of Road Traffic Sensor Data with Artificial Neural Networks
This paper proposes a method for estimating traffic flows on some links of a road network knowing the data on other links that are monitored with sensors. In this way, it is possible to obtain more information on traffic conditions without increasing the number of monitored links. The proposed metho...
Autores principales: | Gallo, Mariano, De Luca, Giuseppina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111933/ https://www.ncbi.nlm.nih.gov/pubmed/30103539 http://dx.doi.org/10.3390/s18082640 |
Ejemplares similares
-
Artificial Neural Networks for Forecasting Passenger Flows on Metro Lines
por: Gallo, Mariano, et al.
Publicado: (2019) -
Querying and Extracting Timeline Information from Road Traffic Sensor Data
por: Imawan, Ardi, et al.
Publicado: (2016) -
Achieving Passive Localization with Traffic Light Schedules in Urban Road Sensor Networks
por: Niu, Qiang, et al.
Publicado: (2016) -
Brazilian Road Traffic Fatalities: A Spatial and Environmental Analysis
por: de Andrade, Luciano, et al.
Publicado: (2014) -
Kernel Sparse Representation with Hybrid Regularization for On-Road Traffic Sensor Data Imputation
por: Chen, Xiaobo, et al.
Publicado: (2018)