Cargando…
Attributes’ Importance for Zero-Shot Pose-Classification Based on Wearable Sensors
This paper presents a simple yet effective method for improving the performance of zero-shot learning (ZSL). ZSL classifies instances of unseen classes, from which no training data is available, by utilizing the attributes of the classes. Conventional ZSL methods have equally dealt with all the avai...
Autores principales: | Ohashi, Hiroki, Al-Naser, Mohammad, Ahmed, Sheraz, Nakamura, Katsuyuki, Sato, Takuto, Dengel, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111934/ https://www.ncbi.nlm.nih.gov/pubmed/30071586 http://dx.doi.org/10.3390/s18082485 |
Ejemplares similares
-
Zero-Shot Image Classification Based on a Learnable Deep Metric
por: Liu, Jingyi, et al.
Publicado: (2021) -
Multilingual translation for zero-shot biomedical classification using BioTranslator
por: Xu, Hanwen, et al.
Publicado: (2023) -
A Siamese Transformer Network for Zero-Shot Ancient Coin Classification
por: Guo, Zhongliang, et al.
Publicado: (2023) -
Zero-Shot Human Activity Recognition Using Non-Visual Sensors
por: Al Machot, Fadi, et al.
Publicado: (2020) -
TSInsight: A Local-Global Attribution Framework for Interpretability in Time Series Data
por: Siddiqui, Shoaib Ahmed, et al.
Publicado: (2021)