Cargando…
Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion
In most practical applications, the tracking process needs to update the data constantly. However, outliers may occur frequently in the process of sensors’ data collection and sending, which affects the performance of the system state estimate. In order to suppress the impact of observation outliers...
Autores principales: | Deng, Zhihong, Yin, Lijian, Huo, Baoyu, Xia, Yuanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112039/ https://www.ncbi.nlm.nih.gov/pubmed/30042346 http://dx.doi.org/10.3390/s18082406 |
Ejemplares similares
-
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
por: Liu, Xi, et al.
Publicado: (2016) -
Maximum Correntropy with Variable Center Unscented Kalman Filter for Robust Power System State Estimation
por: Sun, Zhenglong, et al.
Publicado: (2022) -
Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode
por: Hou, Bowen, et al.
Publicado: (2018) -
Newtonian-Type Adaptive Filtering Based on the Maximum Correntropy Criterion
por: Yue, Pengcheng, et al.
Publicado: (2020) -
Frequency domain maximum correntropy criterion spline adaptive filtering
por: Guo, Wenyan, et al.
Publicado: (2021)