Cargando…

Nanosecond Electric Pulses Induce Early and Late Phases of DNA Damage and Cell Death in Cisplatin-Resistant Human Ovarian Cancer Cells

Chemoresistance is a challenge for management of ovarian cancer, and therefore the response of resistant cells to nanosecond electric pulses (nsEP) was explored. Human ovarian cancer cell line COC1 and the cisplatin-resistant subline COC1/DDP were subjected to nsEP (32 ns, 10 kV/cm, 10 Hz pulse repl...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Guanhua, Yu, Tinghe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112222/
https://www.ncbi.nlm.nih.gov/pubmed/30186858
http://dx.doi.org/10.1155/2018/4504895
Descripción
Sumario:Chemoresistance is a challenge for management of ovarian cancer, and therefore the response of resistant cells to nanosecond electric pulses (nsEP) was explored. Human ovarian cancer cell line COC1 and the cisplatin-resistant subline COC1/DDP were subjected to nsEP (32 ns, 10 kV/cm, 10 Hz pulse repletion frequency, and 10 min exposure duration), and then the cellular responses were followed. The percentages of dead cells and of comet-formed cells in the alkaline assay displayed two peak levels (i.e., 2 and 8 h after nsEP exposure), with the highest value noted at 8 h; the percentage of comet-formed cells in the neutral assay was increased at 8 h; the apoptotic percentage was increased at 8 h, with collapse of the mitochondrial membrane potential and the activation of caspase-3 and caspase-9. The comet assay demonstrated DNA single-strand break at 2 h and double-strand break at 8 h. nsEP resulted in lower cytotoxicity in COC1/DDP cells compared with COC1 cells. These findings indicated that nsEP induced early and late phases of DNA damage and cell death, and these two types of cell death may have distinct applications to treatments of chemoresistant ovarian cancers.