Cargando…
Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro
The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet) assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112347/ https://www.ncbi.nlm.nih.gov/pubmed/30166869 http://dx.doi.org/10.1016/j.sdentj.2017.10.001 |
_version_ | 1783350834402164736 |
---|---|
author | Angelieri, Fernanda da Silva, Yuri Slusarenko Ribeiro, Daniel Araki |
author_facet | Angelieri, Fernanda da Silva, Yuri Slusarenko Ribeiro, Daniel Araki |
author_sort | Angelieri, Fernanda |
collection | PubMed |
description | The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet) assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok®) were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure®) and compomer (Ultra Band Lok®) cause genetic damage in mammalian cells in vitro. |
format | Online Article Text |
id | pubmed-6112347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-61123472018-08-30 Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro Angelieri, Fernanda da Silva, Yuri Slusarenko Ribeiro, Daniel Araki Saudi Dent J Original Article The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet) assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok®) were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure®) and compomer (Ultra Band Lok®) cause genetic damage in mammalian cells in vitro. Elsevier 2018-01 2017-10-24 /pmc/articles/PMC6112347/ /pubmed/30166869 http://dx.doi.org/10.1016/j.sdentj.2017.10.001 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Angelieri, Fernanda da Silva, Yuri Slusarenko Ribeiro, Daniel Araki Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
title | Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
title_full | Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
title_fullStr | Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
title_full_unstemmed | Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
title_short | Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
title_sort | genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112347/ https://www.ncbi.nlm.nih.gov/pubmed/30166869 http://dx.doi.org/10.1016/j.sdentj.2017.10.001 |
work_keys_str_mv | AT angelierifernanda genotoxicityandcytotoxicityinducedbyeluatesfromorthodonticglassionomercementsinvitro AT dasilvayurislusarenko genotoxicityandcytotoxicityinducedbyeluatesfromorthodonticglassionomercementsinvitro AT ribeirodanielaraki genotoxicityandcytotoxicityinducedbyeluatesfromorthodonticglassionomercementsinvitro |