Cargando…

Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions

Unconventional superconductivity arising from the interplay between strong spin–orbit coupling and magnetism is an intensive area of research. One form of unconventional superconductivity arises when Cooper pairs subjected to a magnetic exchange coupling acquire a finite momentum. Here, we report on...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Angela Q., Park, Moon Jip, Gill, Stephen T., Xiao, Yiran, Reig-i-Plessis, Dalmau, MacDougall, Gregory J., Gilbert, Matthew J., Mason, Nadya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113236/
https://www.ncbi.nlm.nih.gov/pubmed/30154472
http://dx.doi.org/10.1038/s41467-018-05993-w
Descripción
Sumario:Unconventional superconductivity arising from the interplay between strong spin–orbit coupling and magnetism is an intensive area of research. One form of unconventional superconductivity arises when Cooper pairs subjected to a magnetic exchange coupling acquire a finite momentum. Here, we report on a signature of finite momentum Cooper pairing in the three-dimensional topological insulator Bi(2)Se(3). We apply in-plane and out-of-plane magnetic fields to proximity-coupled Bi(2)Se(3) and find that the in-plane field creates a spatially oscillating superconducting order parameter in the junction as evidenced by the emergence of an anomalous Fraunhofer pattern. We describe how the anomalous Fraunhofer patterns evolve for different device parameters, and we use this to understand the microscopic origin of the oscillating order parameter. The agreement between the experimental data and simulations shows that the finite momentum pairing originates from the coexistence of the Zeeman effect and Aharonov–Bohm flux.