Cargando…
Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons
The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been...
Autores principales: | Chakraborty, Indranil, Saha, Gobinda, Sengupta, Abhronil, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113276/ https://www.ncbi.nlm.nih.gov/pubmed/30154507 http://dx.doi.org/10.1038/s41598-018-31365-x |
Ejemplares similares
-
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
por: Sengupta, Abhronil, et al.
Publicado: (2016) -
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
por: Sengupta, Abhronil, et al.
Publicado: (2019) -
Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2016) -
Correction: Corrigendum: Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
por: Sengupta, Abhronil, et al.
Publicado: (2017) -
Exploring the Connection Between Binary and Spiking Neural Networks
por: Lu, Sen, et al.
Publicado: (2020)