Cargando…
Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study
Brain age estimation from anatomical features has been attracting more attention in recent years. This interest in brain age estimation is motivated by the importance of biological age prediction in health informatics, with an application to early prediction of neurocognitive disorders. It is well-k...
Autores principales: | Aycheh, Habtamu M., Seong, Joon-Kyung, Shin, Jeong-Hyeon, Na, Duk L., Kang, Byungkon, Seo, Sang W., Sohn, Kyung-Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113379/ https://www.ncbi.nlm.nih.gov/pubmed/30186151 http://dx.doi.org/10.3389/fnagi.2018.00252 |
Ejemplares similares
-
Harmonization of Multicenter Cortical Thickness Data by Linear Mixed Effect Model
por: Kim, SeungWook, et al.
Publicado: (2022) -
Predicting Alzheimer’s disease progression using multi-modal deep learning approach
por: Lee, Garam, et al.
Publicado: (2019) -
MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework
por: Lee, Garam, et al.
Publicado: (2019) -
Author Correction: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
por: Lee, Garam, et al.
Publicado: (2023) -
Machine Learning-based Individual Assessment of Cortical Atrophy Pattern in Alzheimer’s Disease Spectrum: Development of the Classifier and Longitudinal Evaluation
por: Lee, Jin San, et al.
Publicado: (2018)