Cargando…

DEAD box protein DDX1 promotes colorectal tumorigenesis through transcriptional activation of the LGR5 gene

DDX1, a member of the DEAD box RNA helicase family, plays a critical role in testicular tumors. However, it remains to be clarified whether DDX1 is involved in other types of malignant tumors such as colorectal cancer. We disrupted the DDX1 gene in a human colorectal cancer cell line LoVo using the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanaka, Kiyoko, Ikeda, Narumi, Miyashita, Kazuya, Nuriya, Hideko, Hara, Takahiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113447/
https://www.ncbi.nlm.nih.gov/pubmed/29869821
http://dx.doi.org/10.1111/cas.13661
Descripción
Sumario:DDX1, a member of the DEAD box RNA helicase family, plays a critical role in testicular tumors. However, it remains to be clarified whether DDX1 is involved in other types of malignant tumors such as colorectal cancer. We disrupted the DDX1 gene in a human colorectal cancer cell line LoVo using the CRISPR/Cas9‐mediated gene‐targeting system. DDX1‐KO LoVo cells exhibited a much slower growth rate, produced fewer colonies in soft agar medium, and generated smaller solid tumors in nude mice than parental LoVo cells. Such phenotypes of the DDX1‐KO cells were mostly reversed by exogenous expression of DDX1. These results indicate that DDX1 is required for tumorigenicity of colorectal cancer cells. In the DDX1‐KO cells, the cancer stem cell marker genes LGR5, CD133, ALDH1 and SOX2 were markedly suppressed. Among them, expression of LGR5, which is essential for tumorigenicity of colorectal cancer cells, was restored in the DDX1‐transfected DDX1‐KO cells. Consistently, the DDX1‐KO cells lost sphere‐forming capacity in a DDX1‐dependent fashion. Reporter and chromatin immunoprecipitation assays revealed that DDX1 directly bound to the −1837 to −1662 region of the enhancer/promoter region of the human LGR5 gene and enhanced its transcription in LoVo cells. Repression of LGR5 by DDX1 knockdown was observed in 2 other human colorectal cancer cell lines, Colo320 and SW837. These results suggest that LGR5 is a critical effector of DDX1 in colorectal cancer cells. The DDX1‐LGR5 axis could be a new drug target for this type of malignant cancer.