Cargando…

Infrared divergences and quantum coherence

In theories with long-range forces like QED or perturbative gravity, only rates that include emitted soft radiation are non-vanishing. Independently of detector resolution, finite observables can only be obtained after integrating over the IR-component of this radiation. This integration can lead to...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez, César, Letschka, Raoul, Zell, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113690/
https://www.ncbi.nlm.nih.gov/pubmed/30197570
http://dx.doi.org/10.1140/epjc/s10052-018-6088-2
Descripción
Sumario:In theories with long-range forces like QED or perturbative gravity, only rates that include emitted soft radiation are non-vanishing. Independently of detector resolution, finite observables can only be obtained after integrating over the IR-component of this radiation. This integration can lead to some loss of quantum coherence. In this note, however, we argue that it should in general not lead to full decoherence. Based on unitarity, we suggest a way to define non-vanishing off-diagonal pieces of the IR-finite density matrix. For this IR-finite density matrix, we estimate the dependence of the loss of quantum coherence, i.e. of its purity, on the scattering kinematics.