Cargando…
Bio-production of gaseous alkenes: ethylene, isoprene, isobutene
To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and hav...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114056/ https://www.ncbi.nlm.nih.gov/pubmed/30181774 http://dx.doi.org/10.1186/s13068-018-1230-9 |
Sumario: | To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and have biological production pathways. Production levels, however, remain low, thus enhancing bio-production of gaseous petrochemicals for chemical precursors is critical. This review covers the metabolic pathways and production levels of the gaseous alkenes ethylene, isoprene, and isobutene. Techniques needed to drive production to higher levels are also discussed. |
---|