Cargando…
Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study
BACKGROUND: Informative attrition occurs when the reason participants drop out from a study is associated with the study outcome. Analysing data with informative attrition can bias longitudinal study inferences. Approaches exist to reduce bias when analysing longitudinal data with monotone missingne...
Autores principales: | Welch, Catherine A., Sabia, Séverine, Brunner, Eric, Kivimäki, Mika, Shipley, Martin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114233/ https://www.ncbi.nlm.nih.gov/pubmed/30157752 http://dx.doi.org/10.1186/s12874-018-0548-0 |
Ejemplares similares
-
Detection of Outliers Due to Participants’ Non-Adherence to Protocol in a Longitudinal Study of Cognitive Decline
por: Dugravot, Aline, et al.
Publicado: (2015) -
Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias
por: Curnow, Elinor, et al.
Publicado: (2023) -
Bayesian imputation of time-varying covariates in linear mixed
models
por: Erler, Nicole S, et al.
Publicado: (2017) -
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables()
por: White, Ian R., et al.
Publicado: (2010) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008)