Cargando…
Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance
BACKGROUND: No approved targeted agents are available for esophageal squamous cell carcinoma (ESCC). Informative genomic analysis and mouse patient-derived xenografts (PDX) also called mouse avatar can greatly expedite drug discovery. METHODS: Six ESCC cell lines and 7 out of 25 PDX models derived f...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114252/ https://www.ncbi.nlm.nih.gov/pubmed/30157900 http://dx.doi.org/10.1186/s13045-018-0651-z |
_version_ | 1783351156626423808 |
---|---|
author | Liu, Zhentao Chen, Zuhua Wang, Jingyuan Zhang, Mengqi Li, Zhongwu Wang, Shubin Dong, Bin Zhang, Cheng Gao, Jing Shen, Lin |
author_facet | Liu, Zhentao Chen, Zuhua Wang, Jingyuan Zhang, Mengqi Li, Zhongwu Wang, Shubin Dong, Bin Zhang, Cheng Gao, Jing Shen, Lin |
author_sort | Liu, Zhentao |
collection | PubMed |
description | BACKGROUND: No approved targeted agents are available for esophageal squamous cell carcinoma (ESCC). Informative genomic analysis and mouse patient-derived xenografts (PDX) also called mouse avatar can greatly expedite drug discovery. METHODS: Six ESCC cell lines and 7 out of 25 PDX models derived from 188 biopsies with clear molecular features were employed to evaluate the sensitivity of several EGFR blockers in vitro and in vivo, as well as the underlying antitumor mechanisms of the most promising EGFR-TKI afatinib. Mechanisms involved in acquired resistance of afatinib were explored based on established resistant cell lines and PDX models followed by an attempt to reverse resistance. RESULTS: Compared with other EGFR blockers, the second-generation EGFR-TKI afatinib exerted superior antitumor effects in ESCC, and EGFR copy number gain (CNG) or overexpression was proposed to be predictive biomarkers. Afatinib played its antitumor effects by inhibiting EGFR downstream pathways, as well as inducing apoptosis and cell cycle arrest at G1. It was increased phosphorylation of Src family kinases (SFKs), rather than MET upregulation, that conferred to acquired resistance of afatinib. Dual blockade of EGFR and SFKs could overcome afatinib resistance and warrants validation in clinical practice. CONCLUSION: Both ESCC cell lines and PDXs with EGFR CNG or overexpression are potential candidates for afatinib, and concomitant EGFR/SFKs inhibition could reverse afatinib-acquired resistance caused by SFKs activation in ESCC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13045-018-0651-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6114252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61142522018-09-04 Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance Liu, Zhentao Chen, Zuhua Wang, Jingyuan Zhang, Mengqi Li, Zhongwu Wang, Shubin Dong, Bin Zhang, Cheng Gao, Jing Shen, Lin J Hematol Oncol Research BACKGROUND: No approved targeted agents are available for esophageal squamous cell carcinoma (ESCC). Informative genomic analysis and mouse patient-derived xenografts (PDX) also called mouse avatar can greatly expedite drug discovery. METHODS: Six ESCC cell lines and 7 out of 25 PDX models derived from 188 biopsies with clear molecular features were employed to evaluate the sensitivity of several EGFR blockers in vitro and in vivo, as well as the underlying antitumor mechanisms of the most promising EGFR-TKI afatinib. Mechanisms involved in acquired resistance of afatinib were explored based on established resistant cell lines and PDX models followed by an attempt to reverse resistance. RESULTS: Compared with other EGFR blockers, the second-generation EGFR-TKI afatinib exerted superior antitumor effects in ESCC, and EGFR copy number gain (CNG) or overexpression was proposed to be predictive biomarkers. Afatinib played its antitumor effects by inhibiting EGFR downstream pathways, as well as inducing apoptosis and cell cycle arrest at G1. It was increased phosphorylation of Src family kinases (SFKs), rather than MET upregulation, that conferred to acquired resistance of afatinib. Dual blockade of EGFR and SFKs could overcome afatinib resistance and warrants validation in clinical practice. CONCLUSION: Both ESCC cell lines and PDXs with EGFR CNG or overexpression are potential candidates for afatinib, and concomitant EGFR/SFKs inhibition could reverse afatinib-acquired resistance caused by SFKs activation in ESCC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13045-018-0651-z) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-29 /pmc/articles/PMC6114252/ /pubmed/30157900 http://dx.doi.org/10.1186/s13045-018-0651-z Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Liu, Zhentao Chen, Zuhua Wang, Jingyuan Zhang, Mengqi Li, Zhongwu Wang, Shubin Dong, Bin Zhang, Cheng Gao, Jing Shen, Lin Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance |
title | Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance |
title_full | Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance |
title_fullStr | Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance |
title_full_unstemmed | Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance |
title_short | Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance |
title_sort | mouse avatar models of esophageal squamous cell carcinoma proved the potential for egfr-tki afatinib and uncovered src family kinases involved in acquired resistance |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114252/ https://www.ncbi.nlm.nih.gov/pubmed/30157900 http://dx.doi.org/10.1186/s13045-018-0651-z |
work_keys_str_mv | AT liuzhentao mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT chenzuhua mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT wangjingyuan mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT zhangmengqi mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT lizhongwu mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT wangshubin mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT dongbin mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT zhangcheng mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT gaojing mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance AT shenlin mouseavatarmodelsofesophagealsquamouscellcarcinomaprovedthepotentialforegfrtkiafatinibanduncoveredsrcfamilykinasesinvolvedinacquiredresistance |