Cargando…

PseUI: Pseudouridine sites identification based on RNA sequence information

BACKGROUND: Pseudouridylation is the most prevalent type of posttranscriptional modification in various stable RNAs of all organisms, which significantly affects many cellular processes that are regulated by RNA. Thus, accurate identification of pseudouridine (Ψ) sites in RNA will be of great benefi...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jingjing, Fang, Ting, Zhang, Zizheng, Huang, Bei, Zhu, Xiaolei, Xiong, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114832/
https://www.ncbi.nlm.nih.gov/pubmed/30157750
http://dx.doi.org/10.1186/s12859-018-2321-0
Descripción
Sumario:BACKGROUND: Pseudouridylation is the most prevalent type of posttranscriptional modification in various stable RNAs of all organisms, which significantly affects many cellular processes that are regulated by RNA. Thus, accurate identification of pseudouridine (Ψ) sites in RNA will be of great benefit for understanding these cellular processes. Due to the low efficiency and high cost of current available experimental methods, it is highly desirable to develop computational methods for accurately and efficiently detecting Ψ sites in RNA sequences. However, the predictive accuracy of existing computational methods is not satisfactory and still needs improvement. RESULTS: In this study, we developed a new model, PseUI, for Ψ sites identification in three species, which are H. sapiens, S. cerevisiae, and M. musculus. Firstly, five different kinds of features including nucleotide composition (NC), dinucleotide composition (DC), pseudo dinucleotide composition (pseDNC), position-specific nucleotide propensity (PSNP), and position-specific dinucleotide propensity (PSDP) were generated based on RNA segments. Then, a sequential forward feature selection strategy was used to gain an effective feature subset with a compact representation but discriminative prediction power. Based on the selected feature subsets, we built our model by using a support vector machine (SVM). Finally, the generalization of our model was validated by both the jackknife test and independent validation tests on the benchmark datasets. The experimental results showed that our model is more accurate and stable than the previously published models. We have also provided a user-friendly web server for our model at http://zhulab.ahu.edu.cn/PseUI, and a brief instruction for the web server is provided in this paper. By using this instruction, the academic users can conveniently get their desired results without complicated calculations. CONCLUSION: In this study, we proposed a new predictor, PseUI, to detect Ψ sites in RNA sequences. It is shown that our model outperformed the existing state-of-art models. It is expected that our model, PseUI, will become a useful tool for accurate identification of RNA Ψ sites. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2321-0) contains supplementary material, which is available to authorized users.