Cargando…

Semicrystalline Block Copolymers in Rigid Confining Nanopores

[Image: see text] We have investigated PLLA crystallization in lamellae-forming PS-b-PLLA confined to straight cylindrical nanopores under weak confinement (nanopore diameter D/equilibrium PS-b-PLLA period L(0) ≥ 4.8). Molten PS-b-PLLA predominantly forms concentric lamellae along the nanopores, but...

Descripción completa

Detalles Bibliográficos
Autores principales: Yau, Man Yan Eric, Gunkel, Ilja, Hartmann-Azanza, Brigitte, Akram, Wajiha, Wang, Yong, Thurn-Albrecht, Thomas, Steinhart, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114844/
https://www.ncbi.nlm.nih.gov/pubmed/30174341
http://dx.doi.org/10.1021/acs.macromol.7b01567
_version_ 1783351269852708864
author Yau, Man Yan Eric
Gunkel, Ilja
Hartmann-Azanza, Brigitte
Akram, Wajiha
Wang, Yong
Thurn-Albrecht, Thomas
Steinhart, Martin
author_facet Yau, Man Yan Eric
Gunkel, Ilja
Hartmann-Azanza, Brigitte
Akram, Wajiha
Wang, Yong
Thurn-Albrecht, Thomas
Steinhart, Martin
author_sort Yau, Man Yan Eric
collection PubMed
description [Image: see text] We have investigated PLLA crystallization in lamellae-forming PS-b-PLLA confined to straight cylindrical nanopores under weak confinement (nanopore diameter D/equilibrium PS-b-PLLA period L(0) ≥ 4.8). Molten PS-b-PLLA predominantly forms concentric lamellae along the nanopores, but intertwined helices occur even for D/L(0) ≈ 7.3. Quenching PS-b-PLLA melts below T(G)(PS) results in PLLA cold crystallization strictly confined by the vitrified PS domains. Above T(G)(PS), PLLA crystallization is templated by the PS-b-PLLA melt domain structure in the nanopore centers, while adsorption on the nanopore walls stabilizes the outermost cylindrical PS-b-PLLA shell. In between, the nanoscopic PS-b-PLLA melt domain structure apparently ripens to reduce frustrations transmitted from the outermost immobilized PS-b-PLLA layer. The onset of PLLA crystallization catalyzes the ripening while transient ripening states are arrested by advancing PLLA crystallization. Certain helical structure motifs persist PLLA crystallization even if PS is soft. The direction of fastest PLLA crystal growth is preferentially aligned with the nanopore axes to the same degree as for PLLA homopolymer, independent of whether PS is vitreous or soft.
format Online
Article
Text
id pubmed-6114844
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-61148442018-08-30 Semicrystalline Block Copolymers in Rigid Confining Nanopores Yau, Man Yan Eric Gunkel, Ilja Hartmann-Azanza, Brigitte Akram, Wajiha Wang, Yong Thurn-Albrecht, Thomas Steinhart, Martin Macromolecules [Image: see text] We have investigated PLLA crystallization in lamellae-forming PS-b-PLLA confined to straight cylindrical nanopores under weak confinement (nanopore diameter D/equilibrium PS-b-PLLA period L(0) ≥ 4.8). Molten PS-b-PLLA predominantly forms concentric lamellae along the nanopores, but intertwined helices occur even for D/L(0) ≈ 7.3. Quenching PS-b-PLLA melts below T(G)(PS) results in PLLA cold crystallization strictly confined by the vitrified PS domains. Above T(G)(PS), PLLA crystallization is templated by the PS-b-PLLA melt domain structure in the nanopore centers, while adsorption on the nanopore walls stabilizes the outermost cylindrical PS-b-PLLA shell. In between, the nanoscopic PS-b-PLLA melt domain structure apparently ripens to reduce frustrations transmitted from the outermost immobilized PS-b-PLLA layer. The onset of PLLA crystallization catalyzes the ripening while transient ripening states are arrested by advancing PLLA crystallization. Certain helical structure motifs persist PLLA crystallization even if PS is soft. The direction of fastest PLLA crystal growth is preferentially aligned with the nanopore axes to the same degree as for PLLA homopolymer, independent of whether PS is vitreous or soft. American Chemical Society 2017-10-18 2017-11-14 /pmc/articles/PMC6114844/ /pubmed/30174341 http://dx.doi.org/10.1021/acs.macromol.7b01567 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Yau, Man Yan Eric
Gunkel, Ilja
Hartmann-Azanza, Brigitte
Akram, Wajiha
Wang, Yong
Thurn-Albrecht, Thomas
Steinhart, Martin
Semicrystalline Block Copolymers in Rigid Confining Nanopores
title Semicrystalline Block Copolymers in Rigid Confining Nanopores
title_full Semicrystalline Block Copolymers in Rigid Confining Nanopores
title_fullStr Semicrystalline Block Copolymers in Rigid Confining Nanopores
title_full_unstemmed Semicrystalline Block Copolymers in Rigid Confining Nanopores
title_short Semicrystalline Block Copolymers in Rigid Confining Nanopores
title_sort semicrystalline block copolymers in rigid confining nanopores
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114844/
https://www.ncbi.nlm.nih.gov/pubmed/30174341
http://dx.doi.org/10.1021/acs.macromol.7b01567
work_keys_str_mv AT yaumanyaneric semicrystallineblockcopolymersinrigidconfiningnanopores
AT gunkelilja semicrystallineblockcopolymersinrigidconfiningnanopores
AT hartmannazanzabrigitte semicrystallineblockcopolymersinrigidconfiningnanopores
AT akramwajiha semicrystallineblockcopolymersinrigidconfiningnanopores
AT wangyong semicrystallineblockcopolymersinrigidconfiningnanopores
AT thurnalbrechtthomas semicrystallineblockcopolymersinrigidconfiningnanopores
AT steinhartmartin semicrystallineblockcopolymersinrigidconfiningnanopores