Cargando…

Control of occlusion of middle cerebral artery in perinatal and neonatal mice with magnetic force

Ischemic perinatal stroke (IPS) is common, resulting in significant mortality and morbidity. In such cases, the incidence of unilateral arterial cerebral infarction is often occluded in the middle cerebral artery (MCA), leading to focal ischemia. In adult rodents, blockage of MCA is the most frequen...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Jie-Min, Peng, Chuanqi, Wang, Yihui, Zheng, Jie, Ge, Woo-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114863/
https://www.ncbi.nlm.nih.gov/pubmed/30157965
http://dx.doi.org/10.1186/s13041-018-0389-0
Descripción
Sumario:Ischemic perinatal stroke (IPS) is common, resulting in significant mortality and morbidity. In such cases, the incidence of unilateral arterial cerebral infarction is often occluded in the middle cerebral artery (MCA), leading to focal ischemia. In adult rodents, blockage of MCA is the most frequently used strategy for ischemic stroke study. However, modeling MCA occlusion (MCAo) in postnatal day 0–7 (P0–7) mouse pups for IPS study has not been accomplished. Here we occluded the dMCA by inducing the accumulation of magnetic particles (MPs) administered through the superficial temporal vein of mice between P0 and P7, which we called neonatal or perinatal SIMPLE (Stroke Induced with Magnetic Particles). SIMPLE produced either permanent or transient occlusion in the dMCA of perinatal and neonatal mice. Permanent MCA occlusion with SIMPLE resulted in cerebral infarction and neuronal death in the brain. SIMPLE can also be used to reliably produce focal ischemic stroke in neonatal or perinatal mouse brains. As a result, SIMPLE allows the modeling of IPS or focal ischemic stroke for further mechanistic studies in mice, with particular utility for mimicking transient focal ischemia in human pre-term babies, which for the first time here has been accomplished in mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13041-018-0389-0) contains supplementary material, which is available to authorized users.